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NUMERICAL SOLUTION OF THE BOUNDARY VALUE PROBLEMS FOR THE
LOADED DIFFERENTIAL AND FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

Abstract. The article presents a computational method to solve boundary value problems for the loaded
differential and Fredholm integro-differential equations. Solving a problem for the loaded differential and
Fredholm integro-differential equations is reduced to solving a system of linear algebraic equations in rela-
tion to the additional parameters introduced. A numerical method for finding a solution of the problem is
suggested, which is based on solving the constructed system and the Bulirsch-Stoer method for solving Cau-
chy problems on the subintervals. The result is illustrated by example.

Key words: integro-differential equation, loaded differential equation, parametrization method, numeri-
cal method.

Introduction. Loaded differential equations are used to solve problems of long-term prediction
and control of the groundwater level and soil moisture [1, 2]. Various problems for loaded differen-
tial equations and methods of finding their solutions are considered in [1, 3-8].

A new concept of a general solution of a linear loaded differential equation was proposed in
[9]. A new general solution was introduced for the linear Fredholm integro-differential equation in
[10]. Replacing the integral term of an integro-differential equation with a quadrature formula also
leads to a loaded differential equation. Therefore, numerical and approximate methods for solving
boundary value problems for loaded differential equations are also used in solving boundary value
problems for integro-differential equations.

On the basis of the parametrization method [11], in [10], a new approach to the general solution
of the linear Fredholm integro-differential equation was proposed. The interval where the equation
is considered is divided into parts, and the values of the solution at the starting points of subinter-
vals are taken as additional parameters. With the help of newly introduced unknown functions on
the sub-intervals, a special Cauchy problem for a system of integro-differential equations with pa-
rameters is received. Using the solution of the special Cauchy problem, a new general solution of
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the Fredholm linear integro-differential equation is constructed. This general solution, in contrast to
the classical general solution, exists for all Fredholm linear integro-differential equations. The new
general solution allowed us to propose numerical and approximate methods for solving linear
boundary value problems for Fredholm integro-differential equations. The basis of these methods is
to construct and solve systems of linear algebraic equations with respect to arbitrary vectors of the
new general solution. Coefficients and right-hand sides of the systems are determined by solving
the Cauchy problems for linear ordinary differential equations on sub-intervals and solving the line-
ar Fredholm integral equation of the second kind. In [12-14], the linear ordinary Fredholm integral-
differential equation is approximated by a loaded differential equation. The interrelation between
the well-posed solvability of linear boundary value problems for the initial Fredholm integro-
differential equation and the approximated loaded differential equation is established. The necessary
and sufficient conditions for the well-posed solvability of a linear two-point boundary value prob-
lem for the system of Fredholm integro-differential equations, containing the derivative in the inte-
gral member, in terms of the fundamental matrix and the solvability of the second-kind Fredholm
equation, were established in [15].

Despite the large number of papers devoted to the study and solving of boundary value prob-
lems for loaded differential and integro-differential equations, many questions related to the solva-
bility of boundary value problems for the loaded differential and Fredholm integro-differential
equations remain unsolved.

Statement of problem. Consider the boundary value problems for the loaded differential and
Fredholm integro-differential equations

T = 40x + I, Iy ox O i) x(s)ds + T, 40x(8) + £, t € 0.1, (1)

Bx(0) + Cx(T)=d. deR" xe&R" (2)

where the (nx n)-matrices 4;(t), j =0 N, ¢;(t) and ¥, (z) are continuous on [0.T]. k =T,m; the n-
vector f(&) is continuous on [0.T] ; B and C are constant (nx=n) - matrices, and
0=8, <8, < <8 <8y, =T, lIxll = max; _r=x;l.

Let c(o.7.R*) denote the space of continuous on [0.T] functions x(t) with norm
Ixl, = MaXy g p 1) =)l

The solution to problems (1) and (2) is a continuously differentiable on (0.T) function

=(t) e C([0.T].R™) satisfying the system of loaded differential and Fredholm integro-differential
equations (1) and boundary condition (2).

Scheme of parametrization method. Given the points: 0 =68, < 8 < <8 <8,,,=T, and
let 4, denote the partition of interval [0.T) into ¥ + 1 subintervals [0.T)} = UYZ([6,_,.6,).

Define the space c([0.T]. 4, R™¥+1y of systems of functions x[t]l = (x,(t). x,(8). ... x4, ()],
where x,:[6,_,.8) — R are continuous on [8,_.. &) and have finite left-sided limits lim,_,__, x,(£) for
all »=TN+1,withnorm llx[]ll; = max, gz sup;cpe._, a5 llx, @

The restriction of the function x(t) to the r —th interval [8,_,.5.) is denoted by x.(f), i.e.
x(t)==x(t) for te[f_.8) , r=TN+1. Then we introduce additional parameters
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A,=x.08,_,) »r=TNE+1. Making the substitution =x.(t)=u.(t) +1, on every r -th interval
le._,.8.), »=T1,N +1,we obtain the boundary value problem with parameters

di 8j
T = 4O + 41+ T [ en @) [y + 4]as +
+IY AWML+ FO, tels_.8), r=TN+1 (3)
u,6,_)=0 r=TN+1. 4)
Biy+ CAyyy + Climyr_guy,(t) = d, (5)
A+ Hmr—.-ﬂs—nus{ﬂ =dopp 5= 1N (6)

where (6) are conditions for matching the solution at the interior points of partition 4.

A pair (u'[tLA") with elements w’le] = (ui (), us (), .. un o (£)) € CCL0.T] Ay RPV+EY
A* = (AL A% Ay ) € R™™*Y s said to be a solution to problems (3)-(6) if the functions
ur(t), » =T,N + 1, are continuously differentiable on [8,_,.4.) and satisfy (3) and additional condi-
tions (5) and (6) with 4; = 1}, j = T.W + 1. and initial conditions (4).

Problems (1), (2) and (3)-(6) are equivalent. If the x*(t) is a solution of problems (1) and (2),
then the pair (u[tLA*). where u*lt] = (x*(£) — x* (). x*(t) — x*(8, ). ... x* (&) — x*(By)) , and
A" = (x"(8,), x"(By). ... x"(By)), is a solution of problems (3)-(6). Conversely, if a pair (al#], 1) with
elements lt] = (i, (£, i, (), oo iy o (£)) € CC[0.T] A RP¥ 0y I = (A 45 Aye ) e RPY*Y s g
solution of (3)-(6), then the function =(t} defined by the equalities  #(t) =a.(t) +1, ,

teld,_..8), r=1T.N +1, and (T =lim,.r_p iy, (£) + L5.4, Will be the solution of the original prob-
lems (1) and (2).

Fixed 4; problems (3) and (4) are special Cauchy problems for the system of Fredholm integro-
differential equations. We have ¥ + 1 Cauchy problems on the intervals [6,_,. 8.}, r =T W + 1,and the
system of integro-differential equations includes of the sum of integrals of all ¥ + 1 functions u, ()
with degenerate kernels on the segments [&,_;.6,].

Using the fundamental matrix %, (t) of differential equation %= A(t)x on [8._,.5.], we reduce

the special Cauchy problem for the system of integro-differential equations with parameters (3) and
(4) to the equivalent system of integral equations

t t N
() = X [ X-H() Ay () dodg 44, () f 5@ 4@, dr+
i=1

-1 B‘F-i

5@ f_ % @I @ ve@)luE) + Adsdr +
+%,0 [ X '@f@dr, telf_.6) r=TNF1, 7

Let u; = EY¢ J’gi_"_i Ue(s)u;(s)ds, k=1, m, and rewrite the system of integral equations (7) in the
following form

u, () = B X, () fgi_i.k'r'l{r]cpk{r] druy +
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+%,00 [ X0 A@drh 4% (0 [ X1 @ TV, A O 1, dr +
+X, (t) JI.E:. X By o (o) BN fﬁ,  Yr(s)dsdr +

+%,0 f,_ X'@f@dr, teld,_.6) r=TN+1. (8)
Multiplying both sides of (8) by w,(t), integrating on the interval [, _;.&] and summing up over
r, we get the system of linear algebraic equations with respect to u = (uy.uz. ... iy, ) € R™™
tp = EFCy G (A e + BV (004, + BV, W, 0804, + g,(F.4y) p=Tm,  (9)
with the (n x n) matrices

Gp i (8y) = "ﬂfﬂ, Y @%@ [5_ X' (Ddsdr, k=Tm
N+l m

b= [ v@n e f @A dsdr+ Y Y. f >

Bt Jj=1 k=1 -

* k: () JFHT__ %'_1{'51:]?&':11] drydT JFBY_ Wy (slds, r=TN ¥1,

=

W (8y) = T2 [ 0, @X (@ 5 X7 '()4,Gdsdr, j=TN
and vectors of dimension n

gn{f Ay) = E*.r+1_|’97 T.Ln':ﬂk' (z) _Iﬂi;r X s flsddsdr, p=1.m,

Using the matrices &, ,(a,). V. (a,), W, (a,) form the c(a,) ={Gﬂ.k{ﬂ;‘rj),ﬁk =1,m, and

viay) = (%,0y)). p=Tm r=TN+1, and w(a,) = (W, ;(8,)). p=Tm j=TN. Then the sys-
tem (9) has the form
[ — 6(ayNu = V(a4 + W(ALE + g(f. 8y, (10)
where I is the identity matrix of dimension nm, £ = (1;.15....45,,3 € B™ and
9(F. 830 = (g (F. 8y). g2 (F. ), o g (F. B)) € RP™,

Definition 1. Partition 4 is called regular if the matrix 1 — G{a) is invertible.
Let =(m. [0.T]) denote the set of regular partitions 4, of [0.T] for the equation (1).

Definition 2. The special Cauchy problems (3) and (4) is called uniquely solvable, if for any

Ae R+ fe) e C([0.T1. R™) they have a unique solution.
Special Cauchy problems (3) and (4) is equivalent to the system of integral equations (7). This
system by virtue of the kernel degeneracy is equivalent to the system of algebraic equations (9) with

respect to u = (u,.uq. ... uy) € R™™, Therefore, the special Cauchy problem is uniquely solvable if and

only if the partition 4,, generating this problem, is regular.
Since the special Cauchy problem is uniguely solvable for the sufficiently small partition step

h = 0 (see [14]), the set =(m. [0.T]) is not empty.
Take e o(m. [0.T]) and present [ — (A, )17* in the next form
1= 681" = (M, (8y)), kop = Tom,

where M, , (4,) are the square matrices of dimension .
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Then according to (10) the elements of vector » € "™ can be determined by the equalities
= DI Mep () (AR, + B (T0 My o (AW, (83) A +
+ XN My () g, O 8y) K =T.om, (11)
In (8), substituting the right-hand side of (11) instead of w;, we get the representation of func-
tions u,(t) viad;, j = TN +1:

u,(t) = ]Z X () J‘ XD ey ) ISETZ My () 1*;_;{1:'-;-;:]} A +
p=1

N+1

+Z

Jj=1

m

Z X, (1) f @) dr J‘:inb {sjds} A+

m

Z X, (&) f Xt eyl dri My, (A, 0W, ; mN]} Ajpr +

k=1

5

j=1

+x () f ~L) Ay (Ddr L 4K (8) J‘ l{f:]ZH':t]ll+1dT+
- -1

12,0 [ X4
5y

D 0@ Y Moy 031G, 80 + f(ﬂ] dr,
k=1 p=1

telg _.68) r=1,N+1. (12)
Introduce the notations:

D, () =TI, %, (6,) [y X (D epy e [T, My, (8,)V, () +
+5) we(ds], jEr nj=TNFL,
Dy () = T, X, (6 o™ X i) an[m, My, (B W, , (8y) +
o w(s)ds]+%, @) [ X @A, dr, r=TN 1,
E, () = ZF X, (8,) [y X7 () @y ()t iy My (B )W, (A +
+%,8) [y X%1@DA B dr j=TN,

F(ay) = S % (8) [ X7 @pe® S, My, (8))g, (. 80) + F@)]az
Then from (12) we get

llmr_;.ﬂ,r o Uy {t:] = E‘.f+:l. Dr-_l{f:'n;:]-l +Ev_1_ErJ{J':'n|r:]-l i+1 +F {1':'!1;:] (13)
Substituting the right-hand side of (13) into the boundary condition (5) and conditions of
matching solution (6), we have the following system of linear algebraic equations with respect to

parameters 4., r = 1.N + 1:
[E + I:'_BBIHLj.':‘ﬂil.r:]:|‘:]'1_ + E?:: I:'_ﬂ:'HL_i'':":"Jl.r:]*;lf_i' + E[I + DN+LN+L{‘ﬂN:]]*1N+1 +

+Ej}r=1 CE:ijmN]‘lj'u =d — Chy,, (4,), (14)

1+ Dy @)l = 1= Dopes B )dus L5y £ 41, = R0, p=TF (15)
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Denoting by @.(4,) the matrix corresponding to the left-hand side of the system of equations
(14) and (15), we get
Q.(8,)4 = —E(Ay), 4 e RV, (16)
where F.(4,) = {_d + CFy, (8y) R (8y). ... Fy ':*':":.r]}-

It is not difficult to establish that the solvability of the boundary value problems (6) and (7) is
equivalent to the solvability of the system (16). The solution of the system (16) is a vector

A= (A5 A%, Ax,e) € R™+Y consists of the values of the solutions of the original problems (6) and

(7) in the initial points of subintervals, i.e. ;= x*(8,_,), r =1T.N + 1.
Further we consider the Cauchy problems for ordinary differential equations on subintervals

Z=aWz+PO, 206, =0, telg_.8] r=TN+1L 17)

where P(t) is either (n % n) matrix, or n vector, both continuous on [8,_,.8,]. r=1.N + 1. Conse-

quently, the solution to problem (17) is a square matrix or a vector of dimension n. Denote by a(P. t)
the solution to the Cauchy problem (17). Obviously,

r
a(P, ) = X, (&) j X 1P dr, te (8081
By

where X, (t) is a fundamental matrix of differential equation (17) on the r-th interval.

Numerical implementation of the parametrization method. We offer the following numeri-
cal implementation of the parametrization method. The algorithm is based on the Bulirsch-Stoer
method to solve the Cauchy problems for ordinary differential equations and it is based on Simp-
son’s method for estimation of the definite integrals.

1. Suppose we have a partition: 0 =6, <8, <-- <8, < 8,., =T. Divide each r-th interval
[6,_,.6,]. r=T N+ 1, into n_parts with step n_= (6, —8,._,)/N,. Assume on each interval [8,_,,8,]
the variable & takes its discrete values:6=6,_,,6 =6,_, +h,,.., §=86,_, + (N,— 1)h,, 6 =6,
and denote by {8, _,, 8,1 the set of such points.

2. Using the Bulirsch-Stoer method, we find the numerical solutions to Cauchy problems (17)
and define the values of (n X n) matrices a}(¢,,8) onthe set {8, _,,6,}, r=T N+ 1, k=Tm.

3. Using the values of (n x =) matrices ¥, (s) and a7 (g,.8) on {f,_,,6,} and Simpson’s

method, we calculate the (n x n) matrices

By

Prrle) = | ¢,(@al (@ dr, pk=Tm, r=TN+1
E."—‘_

Summing up the matrices ¥, (@) over ». we find the (= x n) matrices GF L (ay) = TN ﬂ';:_‘;{cp;;:l,
where i = (hy. by o by, ) € B® Using them, we compose the nm x nm matrix cRa,) = (r:_f_;l.mmj],
.k = Tm. Check the invertibility of matrix [1 — ¢F(a,)]:r™™ — g™™,

If this matrix is invertible, we find [ - 67a,)] " = (MF4(8)). ».k =Tm. If it has no inverse,

then we take a new partition. In particular, each subinterval can be divided into two.
4. Solving the Cauchy problems for ordinary differential equations
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dz —
e Atz + A8, =8, _,) =0, telf._,.8] i=0N,

dz -
i Az + fle), =z(8,_,0=0, telf_,.68] r=TN+1.

by using again the Bulirsch-Stoer method, we find the values of (n x n) matrices a, (4,.4), a,(A;. &),
i =1T,N,and n vector a,(7,6) on {8,_,.6,}, r=T,N + 1.

5. Applying Simpson’s method on the set {6,._,, 8,.}, we evaluate the definite integrals

r—1

B = Jy ¥,(ds, $n(4) = [ ¢, (@al (4, 1)dr, i=0N,

Byn(F) = fi’_‘_% (Day (f,)dr, p=Tm r=TNTL

By the equalities
. . ~hj ~Fiy —
Vo) = 7 (o) + DI IR0, o) ¥l - =TT

Wi (4, By) = TN2EG 00, 1= TN, gf(£.0,) = Vg0, p=Tm,

we define the (n x=) matrices L;Frfﬂwl r=TN+1, 1-1{,” (4 8y), 1= TN, and n vectors g7 (7, Ay),

respectively, » = T,m.
6. Construct the system of linear algebraic equations with respect to parameters

QF (Ay)A = —FF(ay), 1€ R™WH, (18)
The elements of matrix ¢F(a,) and vector F*(a,) = {—d + CRE, (A, EF(ay), .. mv]] are defined
by the equalities Dy ;{Ay) = £, a'" (;. 6,) [E fﬂN] H;"J (a0 + ?,L ] jEr. rj=1TN+1,

ﬂr?r'{":"w:l = E?:i ﬂ-::r ':'5?3';;: BFJ[ELR:i‘“FEp {*':";'.r:”?:r_:rmnr:] +T|E;1;r] + ﬂ_?f{‘.qm Bi—'l
EF (0y) = TP, 0/ (g, 6, ) E0, ME, 0 )WE (8y) + &7 (4. 8,), j =TT
E-Emmj =X GET (o 8, Eg=1M;Ep {ﬂnr:].gfmwj + ﬂ'::r{ﬁ & lr=TN+1.
Solving the system (18), we find #*. As noted above, the elements of AE:(.FLE, F - N+1) are
the values of approximate solution to problems (1) and (2) in the starting points of sublntervals.
xfr(g_)=aF r=TN +1.

7. To define the values of approximate solution at the remaining points of set {8,._,,8,}, we
first find

T

N+ N m
uf = Z (Z (8y) t;?j-(an,])ﬂ,f + Z (Z Mmf, mN]1-vjj-mN])1f+l +
=i Jj=t \p=1

+Z ‘HEPmN]Qf{fsﬂml Ek=1m
p=1
and then solve the Cauchy problems

dx - -
e Alt)x+F (), =x(g_)=x" telg_.6] r=1TN+1
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where F*(£) = BT, @, (t) [Hf. + Y5 T.E;‘;-"jr] + I, 400N, + F@).

And the solutions to Cauchy problems are found by the Bulirsch-Stoer method. Thus, the
algorithm allows us to find the numerical solution to the problems (1) and (2).

To illustrate the proposed approach for the numerical solving linear boundary value problems
for the loaded differential and Fredholm integro-differential equations (1) and (2) on the basis of the
parameterization method, let us consider the following example.

Example. We consider linear boundary value problems for the loaded differential and
Fredholm integro-differential equations

2 = 4©Ox + ] 0,9, ()x(s)ds + 4,0x(6) + FD. t€ .7, (19)
Bx(D) + Cx(T) =d, deR® =xeR> (20)
—_ _1 T __ (sint 1 (4t
Here BD - Ua BII_ - Ea E: - T - 1; HD'&:] _{ t: EDSt]’ Hl{tj - (gf U]a
_f(t+1 ¢* ; _{ s s _f2 7 _(1 0
p® =1 ), we=(, ) 2= 5. c=G 7)
252 ” _ . 24712 23
ﬂ+ Bsint — 6t sint — £ sint — £ — ol +4—
Q= (_1_?) fl&) = 15 A i &0 15
—327 Et+51: —=1-t:|:|:|st+‘!!r —6t* —t% 4+ Tteost — 7

B0

We use the numerical implementation of the algorithm. The accuracy of the solution depends
on the accuracy of solving the Cauchy problem on subintervals and evaluating definite integrals.
We provide the results of the numerical implementation of the algorithm by partitioning the
subintervals [0, 0.5] and [0.5, 1] with step h = 0.05.

The exact solution of problems (19) and (20) is x*() = (*!‘;g:ﬁf?_t %),

Table 1 provides the x*(t,), k = 0.20, exact solution values and #{¢, ).k = 0,20, numerical
solution values.

Table 1. Results received by using MathCad15

t £, x3(¢) £5(E) x5 ()
0 -8.00000313 -8 0.00000045 0
0.05 -7.98487798 -7.984875 -0.33999959 -0.34
0.1 -7.93900282 -7.939 -0.65999964 -0.66
0.15 -7.86162766 -7.861625 -0.95999969 -0.96
0.2 -7.75200248 -7.752 -1.23999974 -1.24
0.25 -7.6093773 -7.609375 -1.49999981 -15
0.3 -7.4330021 -7.433 -1.73999988 -1.74
0.35 -7.22212689 -7.222125 -1.95999995 -1.96
0.4 -6.97600167 -6.976 -2.16000004 -2.16
0.45 -6.69387643 -6.693875 -2.34000012 -2.34
0.5 -6.37500117 -6.375 -2.50000021 25
0.55 -6.01862589 -6.018625 -2.64000031 -2.64
0.6 -5.62400059 -5.624 -2.7600004 2.76
0.65 -5.19037526 -5.190375 -2.86000049 -2.86
0.7 -4.7169999 -4.717 -2.94000058 -2.94
0.75 -4.20312451 -4.203125 -3.00000066 -3
0.8 -3.64799908 -3.648 -3.04000072 -3.04
0.85 -3.05087361 -3.050875 -3.06000077 -3.06
0.9 -2.41099809 -2.411 -3.06000078 -3.06
0.95 -1.72762251 -1.727625 -3.04000077 -3.04
1 -0.99999687 -1 -3.0000007 -3
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For the difference of the corresponding values of the exact and constructed solutions of the
problem the following estimate is true:

max |5y — #¢2)ll < 0.000003.

Conclusion. In this work, we propose a numerical implementation of parametrization method
for finding solutions to linear boundary value problems for the loaded differential and Fredholm in-
tegro-differential equations. Using the parametrization method, we reduce the considered problem
to the equivalent boundary value problem with parameters. The unknown functions are determined
from the Cauchy problems for the system of ordinary differential equations, and the introduced
parameters are determined from the system of algebraic equations. A numerical algorithm for
finding solution to the considered problem is constructed. The Cauchy problem is solved by the Bu-
lirsch-Stoer method. The example illustrating the numerical algorithm of parametrization method is
provided.
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J.A. bakuposa, 7K.M. KagupoaeBa
Kykreared 1udpepeHuHAIABIK KIHe PpeAroibM HHTErpaIAbIK-TU(epeHunATAbIK
TeH/1eyJiepi YIIiH IIeTTiK ecenTepai CAHAbIK ey

AngaTna: Makanaja KykTelareH audepeHnuanibk xone OpearoasM HHTErpaAbIK-Tud de-
pEHIMAABIK TeHIEYJIep] YIIIH MIETTIK €CenTep/li MEyAiH eCeNnTey 9/1ici YChIHbIUIFaH. JKyKTenreH
nuddepeHIMAIIBIK KoHe DpearonbM HHTETpAIABIK-TudGepeHIANIBIK TCHISYIEpl YIIiH ecer-
TEpAl HIeNly EHTI3UIreH KOCBIMIA MapaMeTpiiepre KaThICThI CHI3BIKTBHIK anreOpaliblK TEeHIeyIep
KyHeciH memryre kentipineni. Imki uarepBangapaa Komm ece6in menry ymria bBymupm-LITép omici
MEH KYPBUIFaH KYHEHI IIellyre HeTi3[eNreH eCemnTiH LIeMiMiH TaObyablH CaHIBIK o/ici OepiireH.
Hotmxe MbIcaMeH cuIaTTalagbl.

Tyiinai ce3gep: uHTErpanabK-AuQGepeHInanablK TeHAeY, KYKTenreH auddepeHnnanibk
TEHJCY, TapaMeTpIIey SIICi, CAH IBIK JJIiC

J.A. bakuposa, ’K.M. Kagupo6aeBa
YuciieHHOE peleHue KpaeBbIxX 32124 /151 HArpysKeHHbIX Ju(depeHuaabHbIX 1
HHTErpo-Au(pepeHunaTbLHBIX ypaBHeHU Ppearojabma

AHHOTanus. B cTarbe npelncTaBieH BBIYMCIUTEIBHBIM METOJ PELICHHUS KPaeBbIX 3a1ad Ul
Harpy>keHHbIX AU QepeHnaIbHbIX U UHTErpo-auddepeHanbHbIx ypaBHeHuil dpenronsma. Pe-
IIEHUE 33/1a4M U1 Harpy>KeHHBIX AU depeHnanbHbIX U HHTErpo-1udepeHINaTbHbIX YpaBHEHUH
®penronbma CBOAUTCS K PELIEHUIO CUCTEMBI JIMHEHHBIX alreOpandyeckux ypaBHEHHI OTHOCUTEINb-
HO BBEJICHHBIX JIONOJHUTEIBHBIX MMapaMeTpoB. [IpennokeH YncieHHbIi METOI HaX0KIEHUs pelie-
HHUS 337]a4¥, OCHOBAHHBII Ha PEUIEHUH MTOCTPOEHHOM cucTeMbl U Metoja bynupma-IlITépa nns pe-
nieHust 3aaauu Komm Ha nmoguHTepBanax. Pe3ynpraT WIIIIOCTpUPYETCS: IPUMEPOM.

KuroueBsble ciioBa: nHrerpo-nuddepeHnuanbHoe ypaBHEHUE, HarpyKeHHOe AU depeHnanb-
HO€ YpaBHEHHE, METO/] TapaMETPU3aLH, YUCIEHHBI METOI.
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