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нашу жизнь в беспрецедентной степени. Очень трудно предотвратить эти события в кратко-

срочной перспективе, но план предотвращения рисков может уменьшить негативные послед-

ствия аварии. Настоящее исследование посвящено оценке потенциала наводнений в бассейне 

реки Малая Алматинка в Алматы с использованием четырех моделей прогнозирования 

случайного леса, линейной регрессии, дерево решений и градиентого бустинга.  

Ключевые слова: прогнозирование наводнения, машинное обучение, метод случайного 

леса, метод линейной регрессии, метод дерева решений и метод градиентного бустинга. 
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BOUNDED SOLUTIONS OF DIFFERENTIAL SYSTEMS  

WITH SINGULARITIES AND THEIR APPROXIMATIONS 

 
 Abstract. Singular boundary value problems for a linear nonhomogeneous system of ordinary differ-

ential equations on a finite interval are considered. It is supposed that improper integrals of the norm of the 

coefficient matrix over semiaxes are infinite 

 Key words: ordinary differential equations, singular boundary value problem, bounded solution, ap-

proximation, behavior of solutions at singular points, the parameterization method. 

 

Numerous application problems give rise to differential equations on an infinite interval or 

with singularities at an endpoint. Various problems for such equations have been studied by many 

authors (see [1–8] and references therein). A survey of results on singular boundary value problems 

for second order ordinary differential equations, as well as examples of specific physical processes 

leading to them, can be found in [4]. 

 It is known that one of the main issues of the theory of singular problems is the problem of 

their approximation by regular boundary value problems. The resolution of this problem allows us 

not only to construct an approximate method for finding solutions to singular boundary value prob-

lems, but also to establish effective criteria for their well-posedness in terms of approximating regu-

lar boundary value problems.  
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In [7,8], the questions of the existence of a unique solution of a linear differential equation 

bounded on the whole real line were studied by the parameterization method proposed by D.  S. 

Dzhumabaev [9]. Approximating regular two-point boundary value problems were constructed to 

find the restriction of the bounded solution to a finite interval. 

In the present paper, we consider the differential equation   
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The problem of finding a solution of Eq. (1) bounded on  T,0  when   ,,,0
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nRTCtf  will 

be referred to as Problem .1  

In [10], Problem 1  was studied using the parameterization method [9] with  nonuniform par-

titioning of the interval  T,0 , where the partition points are chosen taking into account the values 

of the equation coefficients. 
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In [10], necessary and sufficient conditions for the well-posedness of Problem 1  in terms of 
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In [11], the problem of finding an approximate solution to Problem 1  is studied, to which we 

refer to as Problem . Given 0 , it is required to determine numbers  ,,0, 21 TTT   real 

 nn matrices ,,CB  and n vector ,d  such that the solution  to the two-point boundary 

value problem 
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nRxTTttfxtA

dt

dx
                                          (2) 
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The construction of approximating regular boundary value problems and establishing a mutual 

relationship between the well-posedness of the original problem and that of approximating prob-

lems in [11], as well as in [10], were carried out using the parameterization method with nonuni-

form partitioning.  

In the present paper we study the behavior of the solution of Eq. (1) near the singular points. 

We consider the following problem.  

Problem 3 . For given functions  continuous on  2/;0 T  and  TT ,2/ , respec-

tively, it is required to find a solution )(* tx  of Eq. (1) satisfying the following conditions: 

                     0||)()(||lim,0||)()(||lim *

0
0

*

00



ttxttx T

Ttt
 .                           (4) 

In order to investigate Problem 3 , we introduce the concept of a “limit solution” to Eq. 

(1) with weight )(/1 t  as 00 t  ( 0Tt ). 

Definition. A function )(txT  continuously differentiable on  TT ,2/  is called the limit solu-
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The limit solution )(0 tx  of Eq. (1) with weight )(/1 t  as 00t  is defined in an analogous 

way.  

Theorem 1.  Let Assumption 1 be fulfilled and .0
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Let )(txT  be a limit solution of Eq. (1) with weight )(/1 t  as 0Tt . We denote the set of 

solutions of Eq. (1) satisfying the condition  by   TTXT ,2/ . The fol-
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lowing theorem establishes an attracting property of the limit solution with weight )(/1 t  as 

0Tt . 

Theorem 2. Let Problem 1  be well-posed and )(txT  be a limit solution of Eq. (1) with weight 

)(/1 t  as 0Tt . Then    ,,2/ TTXT  and any solution )(tx  of Eq. (1) belonging to 

  TTXT ,2/  satisfies the equation .0||)()(||lim
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Since Problem 1  is well-posed, Eq. (6) admits a unique solution  bounded on ),0( T . By 

Theorem 1 we get 
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It follows from (5)-(7) that the function )(~)()( ** txtytx   satisfies Eq. (1) and relations (4).  

Assume that )(ˆ tx  is another solution of Problem .3  Then the function )(ˆ)(* txtx   is a bound-

ed on ),0( T  solution of the homogeneous equation .)( xtA
dt

dx
 Due to the well-posedness of Prob-

lem 1  we have ),(ˆ)(* txtx  meaning that- Problem 3  has only one solution. Thus, the following 

statement holds true.   

Theorem 3.  Let Problem 1  be well-posed and there exist limit solutions )(0 tx  and )(txT  of 

Eq. (1) with weight )(/1 t  as 00t  and 0Tt , respectively, that satisfy conditions (5). 

Then Problem 3  has a unique solution.                                     

Let us note in conclusion that under assumptions 1 and 2 and conditions of Theorem 3 for the 

coefficients and the right-hand side of Eq. (6), the regular two-point boundary value problem  

                                   ),(
~

)( tFytA
dt

dy
   ,, 21 TTt                                                (8) 

 

                                          ,)()( 221001 dTyASPTyASP TT                                             (9) 



РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И  ИНЖЕНЕРИЯ ЗНАНИЙ 

International Journal of Information and Communication Technologies, Vol.1, Issue 2, June, 2020 

48 

+ + 

approximating the problem of finding a solution of Eq. (6) bounded on ),0( T  (see Theorem 2 in 

[11]), allows one, with a given accuracy, to determine a restriction of the solution of problem 3  to 

any interval   ).,0(, 21 TTT   Here  are real nonsingular  matrices that reduce the ma-

trices , respectively, to the generalized Jordan form  
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11A and 0
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Taking into account ),(~)()( ** txtytx   we can conclude that the approximation estimate for 

Problem 3  depends on that for )(* ty  by the solutions of two-point boundary value problems (8) 

and (9), where )(
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Кокотова Е.В. 

Сингулярлы дифференциалдық жүйелердің   

шектелген шешімдері және олардың  аппроксимациялары 

Аңдатпа: Шектелген аралықтағы жай дифференциалдық теңдеулердің сызықты біртекті 

емес жүйесі үшін сингулярлық шекаралық есептер қарастырылады. Жартылай аралықтарда 

коэффициенттер матрицасының нормасынан алынған меншіксіз интегралдар шексіз деп 

ұйғарылған. 

Түйінді сөздер: жай дифференциалдық теңдеулер, сингулярлық шекаралық есеп, шек-

телген шешім, аппроксимациялар, ерекше нүктелердегі шешімдердің әрекеті, параметрлеу 

әдісі 

 

Кокотова Е.В. 

Ограниченные решения дифференциальных систем с  

сингулярностями и их аппроксимации 

Аннотация. Рассматриваются сингулярные краевые задачи для линейной неоднородной 

системы обыкновенных дифференциальных уравнений на конечном интервале. Предполага-

ется, что на полуинтервалах несобственные интегралы от нормы матрицы коэффициентов 

бесконечны. 

Ключевые слова: обыкновенные дифференциальные уравнения, сингулярная краевая 

задача, ограниченное решение, аппроксимации, поведение решений в особых точках, метод 

параметризации.                                                            
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AN APPROACH TO SOLVING A NONLINEAR BOUNDARY  

VALUE PROBLEM FOR A FREDHOLM INTEGRO-DIFFERENTIAL EQUATION 

 
Summary. A nonlinear boundary value problem for a Fredholm integro-differential equation is consid-

ered. The interval where the problem is considered is partitioned and the values of a solution to the problem 

at the left endpoints of the subintervals are introduced as additional parameters. The introduction of addi-

tional parameters gives initial values at the left endpoints of subintervals for new unknown functions. The 


