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A MODIFICATION OF ALGORITHMS OF THE DZHUMABAEV
PARAMETERIZATION METHOD AND A NUMERICAL METHOD

Abstract. The article deals with a modification of the algorithms of D. S. Dzhumabaev's paramet-
rization method. Additional parameters are introduced at the internal partition points and at both ends of the
interval. Sufficient conditions for convergence of these algorithms in terms of input data are given. Using the
right-hand part of the system of differential equations and the boundary condition function, a nonlinear
operator equation was constructed to find initial approximations of unknown parameters. A numerical
method is proposed for finding a solution to a nonlinear two-point boundary value problem for a system of
ordinary differential equations. The numerical method was implemented in a test example.
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We consider a nonlinear two-point boundary value problem for a system of ordinary
differential equations
dx

Ezf(t’x)’ te[0,T], xeR", 1)
g(x(0),x(T)) =0, (2)

where f:[0,T]xR"—R" and g:R"xR" — R" are continuous and || = max|x;] -
i=1l,n

By c([0,T1,R") we denote a space of continuous functions x:[0,T]—R" with norm [x|, =
max [ x(t)] -
te[0,T]

Problems of solvability and construction of approximate methods for the solution of problems
(1) and (2) are studied in numerous papers [1-11]. For the bibliography and detailed analysis of the
works dealing with the main groups of methods aimed at the investigation and solution of
boundary-value problems, see [11].

The main goal of the work is using one modification of the algorithms of the Dzhumabaev
parametrization method [12-14], to establish sufficient conditions for the existence of an isolated
solution of boundary value problems (1) and (2), and to propose a numerical method for solving
boundary value problems (1) and (2).

For the chosen points A, :0=t, <t <t,<...<t, =T, where N=1.2,..., we perform the

partition [o,T):UL[tr_l,tr). Denote by x, (t) the function x(t) restricted to the r th interval

[t ,.t) . By C([O,T],AN,R”N) we denote a space of the systems of functions
x[t]:(xl(t),xz(t),...,xN (t)), where x, :[t,_,,t.)—R" are continuous and have finite left limits

limes: —0X (t) for all r=1,N with the norm HX[]HZ = mf%( sup er (t)H It is clear that
r =LN teft, , t, )

C([O,T], Ay, R”N) is a complete space.
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Denote by A, the value of x (t) at t=t,, (r=1,N) and A, the limit |im x,(t) . Here in

t»tN

contrast to the classical parameterization method the parameter is also entered at the point t =T, so
we will use notations A=(4,4,..., A4y, Ay,,) €R"™ and 1=(4,4,....4,)eR™ . We change the

variable according to u, (t) = x,(t)—A, on each interval [t ,,t.). Then, we obtain the boundary
value problem with parameters

ddu{=f(t,ur+ﬂr), telt ), r=1N, 3)

u,(t,_)=0, r=1,N, 4

(4, Ay.1) =0, (5)

A+ |imour(t)—/1r+1:0, r=1N. (6)
t—>tr—

Let X(t) be a solution to problems (1) and (2). Then, the system of pairs (4, =x.(t, ),
u (t)=x (t)—x(t_,)), r=1,N, is a solution to problems (3)-(6) (here, x (t) is a restriction of x(t)
on [t, ,,t.)). Conversely, if (Zr,ﬁr(t))r:ﬁ, is a solution to (3)-(6), then the function X(t) defined
A +0.(t), fortelt ,t), r=1N,
ZM, fort=t,,
What makes the parametric problem advantageous over (3)-(6) is the presence of the initial
conditions u,(t, ;) =0, r=1,N. For a fixed 4., Cauchy problems (3) and (4) are equivalent to the
Volterra nonlinear integral equation

u (t) = f f(r, A +u())dz, teft_,t), r=1N. @)

Replace u, () on the right-hand side of (7) by its integral representation. Then, u,(t) can be
written as

by the equalities X(t) :{ is a solution to problems (1) and (2).

0= f(rl,/lr R ICws +ur(rz))dz'2)drl, telt ,t), r=LN.
From this relation, we find lim u (t) (r=1,N). Substituting these values into (5) and (6), we
t—t, -0

obtain the following system of nonlinear equations for 4, e R":
g(ﬂl’/’i’N+1) =0,
2, +j: f [rl,,lr +J't f(z,, A, +ur(z'2))dz'2)dz'l —A4,.,=0, r=1,N.
We write this system in the form
Qua, (AW =0, A= (A Ay Ay Ayg) € RV, (8)
Condition A. There exists A, such that the system of nonlinear equations Q4 (A0)=0 has a
solution A® = (12, 49,..., 49,49, )e R"™D, for 1% = (40, 49,...,A9)eR™ the Cauchy problem
‘L“tf = f{t,A%+u,) u(t,)=0 telt ,t),
has a solution u®(t) for all r =1, N, and the system of functions is such that
Ot = (WO ), U0 (t),...,u® ) e C[0,T1, Ay, R™)
We define the function x©(t) as follows:
(1) = {,19) +u@(t), forteft ,t), r=1N,
A9, fort=t,.
We take the numbers p, >0, p, >0, and p >0 and compose the sets
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< pl}’

ﬂ‘r _A’EO) < pl}'

A, =22

r=1,N+1

S(A(O),pl): {A e R"N+D :”A—A(O)“ = max

S(ﬂ(o),pl):{ﬂ: U oo ) €R™ 1= 29 = e

r=1,N

UM, p, )= b1 e C[0.T1 Ay R™): L1 -u®L], < o,
Glp,)= {(t, x) 1t e[O,T],Hx—x‘O’(t)“ < px},
G, p)= v W) R : =29 < p, Jw—22, | < p, }
Condition B. The functions f and g have uniformly continuous partial derivatives f, in

Gl(p,), and g, in G(p,,p,),and g, in GY(p,,n,), and the following inequalities are true:
L=l o.ew|=L, |g.mw|=L,
where L and L, and L, are constants.

Let Condition A be met. We take the system of pairs (ﬂﬁo),uﬁo’(t)), r=1,N. Let's define the
sequence of pairs (/I(rk),ufk) (t)), r=1,N, by the following algorithm.

Step 1. (a) Determine the parameter A‘l):(ﬂf),...,/l‘,ﬁ), (,ﬁll)e R"™* from Eg. (8) with
u=u®; (b) Find u®(t), telt,_,.t,), solving Cauchy problems (3) and (4) with 4, =A®, r=1,N .

Step 2. (a) Replacing u by the calculated function u® and solving Eq. (8), determine
A® e R"™D: (b) Find u®(t), te[t,,,t), solving Cauchy problems (3) and (4) with 4 = A?,
r=1,N.

Continuing this process, at the k th step of the algorithm, we obtain the system of pairs
(/lﬁk),uﬁk)(t)) , r=1,N. Using (ﬂ‘rk),ufk)(t)),r =1,N, form the pair (ﬂ(k’,u(k)[t]), where
A9 = (29, A9) and u®[t]= P @),...,uP ).

The algorithms of the parameterization method open up the prospect for further development of
constructive methods that allow simultaneous investigation of the existence and construction of so-

lutions to boundary value problems for differential equations.
Theorem. 1Assume that there exist A, o, >0, p, >0 and p, >0 for which Conditions A

an,AN (A,u)

and B are satisfied, the (n(N +1)xn(N +1)) Jacobi matrix RN RMN) s invertible

forall Ae S(A(O),pﬂ) and uft]e S(u@)[t],pu) and the following inequalities are true:

1) [anvAgA(A’u)Jl <y,(A,), Where y,(Ay) is constant,

2) 6x(A) = 72(A) max {exp(L(tr ~t.,)) —Z(L(“Jf”} <1,

3 72 o, (0 <,

9 L0 el (L, -, D) -3, 40| <,

5) rp:%{pﬂ max ZS—(L““ _Jlt ) + Py max —(L(tz p_jrla)l) p71}Dpx-
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Then, the sequence of pairs (/l‘k),u(")[t]), k=0,1,..., is contained in S(A?, p, )x S(u®[t], p,)and
converges to (A*,u*[t]), which is a solution to problem (3)-(6) belonging to S(i(o),pl)x S(U(o)[t],pu).
Furthermore, the following estimates are valid:

A0 «_72(Ay) ® 4oY, k=012 ...,
(a) A A H&(QZ(AN)) 1-q,(Ay) QZ,AN (A u 1 B
(b)

ur () —u )< oLt -t ) -k -4 telt .t), r=1N.
Moreover, any solution to problem (3)-(6) belonging to S(A?, p, )xS(u®It], p, ) is isolated.
Based on the proved Theorem, we propose a numerical method for solving problems (1) and

(2):
1) A system of equations Qz,AN (4,0) =0 is compiled.

2) Some vector A%? e R*™*) s selected and an iterative process [13] is constructed to find the
solution of the 2% equation Q,,, (4,0)=0:

0Q,., (A°™.0)
oA
3) The solution to the Cauchy problem is found

ddxtr = f(t,Xr), te[tr—litr)’ Xr ER”’ r=1’N’

A(O,m+l) = l(O,ITI) _1
o

-1
j Qs (A"™,0), M=012,....

X (t)=22, r=1,N.
4) According to Theorem 1, the piecewise continuous function
X(O) (t) = Xﬁo) (t)v t € [tr—l'tr)! r :11 N!
VAT S
IS an approximate solution of the problem (1), (2) with an error not exceeding

_ 72(Ay) 0 0
= sup Eexp(L(t—t =1+1 | AU
: ([‘Jﬁﬁteﬁ,ﬁ,){xp( t-t, )1} Jl_qz( 2o, (.u)

Example.
We consider a nonlinear two point boundary value problem for a second order ordinary
differential equation [15]

y'=y?+27° cos 2t —sin‘ 4, te(n6,11424) yeR, 9)
7Z. -_—
atan[y[GjJ =0.782647, (10)

1 (7 1 ,(11r
=yl Z || -exp| - =y == | | = 0.165009.
eo ;{5 ool -2 (%)

We will perform a replacement: y =x;, y'=x,. We will get the boundary value problem for
the system of ordinary diffferential equations

dx,
— =X,
& i te(76,11424), %X, R, (11)
d—tz = X12 + 272 ¢0s 27t —sin* t,
atan (”j = 0.782647
He)) o (12)

1 T 1 ,(11x
- - - - - .1 .
exp( XZ(GD exp( 2x1(2 jj 0.165009
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For the chosen points A :t =2+ == -~ ,

P (11;; ﬂj , r=08 , we perform the partition
6 8124 6
6 112 4)‘0[”(25 +7r)1192, z(32 + 7r)192) - We will write down a system of nonlinear algebraic

r=1

equations Q, 4, (A,0)=0:
atan(4, ,)—0.782647 =0, exp (1 zmj —exp (-U@J —0.165009 = 0,

2 2
74??77;8/1"1+17ST7; 2~ At 61744S'n( (25; 7r)) Y(l;GAE;ﬂ) in(= (2956+7r))_
2 2
_Cos(ﬂ (Eiz;r?r))+cos(7r (iz;ﬂr))+ 41 (7r (32+7r)) 1 (72' (32+7r))
72’
1 ,, 2 (25+7r), 1 7%(25+7r), 4977
— R — :O, :1,8,
6ar? 0 T gg )t g2 008 S 192 ) 1oe608 O "
T 497 3437°
_ﬂ’rl_—ﬂ’rlﬂ’rz—i_— 3,2_ I’+l,2_
192 36864 2123366£21
7°(32+7r . o (32+7r
Y )) sin(Z_ 32+ 70y |
327r 48 96
! sin(® (25+7r)) 1 sin(® (25+7r))
32r 48 7[ 96
+”sin(M)_ﬁsin(M)_7_”=o' r=18.
9 96 512
0,0) 0,0) (0,0) .. . .
We take the vector 0o - A , &x Al 1, . 1) as the initial approximation
we L)L) ()

of the solution and find the solution to this system using Theorem 1 [13]. We construct the

following iterative process:

1(8Q,, (A°™ o))"
[Mga(A)J 'Qz,Ag(A(Ovm)’O)’ m=01...

Let's take A®*™ as A?, since Q, (A®*90)=0:
o _ o0 [( 0994513)( 0.823050)( 0.492786)( 0.166653
A = A ' = ) Ll H )
—0.469637 ) | —2.394092 ) | —3.135266 ) | —2.321885
0.006523) (0.092625) ( 0.382507 ) (0.732087 ) ( 0.968376
—0.353855 )'( 1.792282 J'| 3.050756 )'| 2.800015 '{ 1.168976

Now we will find solutions of Cauchy problems (at the points t, = 7+(r 1)@ (k- )%,

=18, k=1,6):
ax,, _

ddt
X
"2 = x?, +2x° cos 2zt —sin* t,

r2?

te[r(25+7r)192, 7(32+7r)/192], r=18,

X (r(25+7r)192) = AV, X, ,(7(25+7r)/[192) = AV, r=18,
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using the method of Runge-Kutta of fourth-order accuracy with a step g%zo.ozzgor We will

define the function
O 1) = {xﬁ?}(t), t e[7(25+7r)/192, 7(32+7r)/1192), r=17,
X (t), te[4337960,11724].
The exact solution to the boundary value problems (1) and (2) is the function y(t) =sin®(at),

and the approximate solution is the function x®(t).

The following table shows the values of the numerical solution of the boundary value problems
(1) and (2), as well as the difference between the numerical solution and the exact solution at the

points £ =7 1 (j-1)'% , j=141, where f, =~ ~0.523599, f,, = -7 ~1.430897
6 960 6 24
Table 1
] tj Xl(O)(tj) Xi(O)(tj)_y(tj) J tj Xl(O)(tj) Xl(O)(tj)_y(tj)
1 0,523599 | 0,994513 -0,000001 | 21 | 0,981748 | 0,006523 0,003239
2 0,546506 | 0,978678 -0,000127 | 22 | 1,004655 | 0,003582 0,003368
3 [ 0,569414 | 0,952041 10,000254 | 23 | 1,027563 | 0,010977 0,003498
4 [ 0,592321 | 0,917831 10,000381 | 24 | 1,050470 | 0,028557 0,003627
5 [ 0,615220 | 0,874072 10,000508 | 25 | 1,073377 | 0055962 0,003756
6 0,638136 | 0,823050 -0,000152 | 26 | 1,096285 | 0,092625 0,003883
7 0,661043 | 0,765054 -0,000086 | 27 | 1,119192 | 0,137793 0,004009
8 | 0,683951 | 0,701576 10,000018 | 28 | 1,142100 | 0,190535 0,004136
9 [ 0,706858 | 0,633028 0,000048 | 29 | 1,165007 | 0,49764 0,004265
10 | 0,729766 | 0,563512 0,000115 | 30 | 1,187915 | 0,314257 0,004394
11 | 0,752673 | 0,492786 0,001184 | 31 | 1,210822 | 0,382507 0,004349
12 | 0,775581 | 0,421301 0,001320 | 32 | 1,233730 | 0,453412 0,004438
13 | 0,798488 | 0,351471 0001455 | 33 | 1,056637 | 0,525374 0,004529
14 | 0,82139 | 0,84743 0,001591 | 34 | 1,279545 | 0,596908 0004623
15 | 0,844303 | 0,222500 0,001728 | 35 | 1,302452 | 0,666536 0,004720
16 | 0,867210 | 0,166653 0,002486 | 36 | 1,325359 | 0,732087 0,004086
17 | 0,890118 | 0,117121 0,002614 | 37 | 1,348267 | 0,793651 0,004181
18 | 0,013025 | 0,075562 0002742 | 38 | 1371174 | 0,849233 0,004280
10 | 0,035933 | 0,042837 0,002870 | 39 | 1,394082 | 0,897684 0,004381
20 | 0,958840 | 0,019627 0,003000 | 40 | 1,416989 | 0,938006 0,004488
41 | 1,439897 | 0,969366 0,004597

As can be seen from Table 1, the estimate holds:
m%(lll xl(fj)— y(fj) |< 0.0046.
=1,

Due to the fact that the algorithms of the Dzhumabaev parameterization method are convenient
for numerical implementation, in the future they can become one of universal tools for identifying
and finding approximate solutions to nonlinear boundary value problems.
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C.M. TememeBa
KymabaeBThIH MapamMeTpJiey dici aIropuTMaepiHin MoIuGUKAIUSIChI
JK9He CaH/BIK d/ic

Anparna: Makanana JI.C. XXymabaeBTbIH mapaMeTpiey 9ici alropuTMiepiHiy 0ip Moaudu-
Kalusichl KapacTelpbuiazbl. KocbiMIia mapamerpriep KeCiHAIHIH 1IKI OeJliHy HYKTEelepiHe >KOHE
KEeCIHJIIHIH €Ki YIIbIHAa JAa eHridimeai. byn anroputMaepliH KUHAKTATYBIHBIH IKETKITIKTI
mapTTapbl Oacrankbl OepuriMaep TepMuHAepiHae Kenrtipiaeni. uddepeHunanablk TeHAEynep
KYHECIHIH OH >KarblH JKOHE IIeKapalblK apT (yHKIMACHIH KOJIJaHa OTBIPHII, OeNrici3 mapamerp-
JepiH 0acTanKbl )KYbIKTayblH Taly YIIIH CBI3BIKTBIK €MEC ONepaTOpIbIK TeHAEYl Kypbliaabl. XKait
g depeHIManIbIK TeHICYNep )KYHeci YIIIiH ChI3BIKTBHIK eMeC €Ki HyKTeNl MIETTIK eCenTiH IMenIiMiH
TaOyAbIH CaHBIK 9/1iC1 YChIHBUIAAEI. CaHIBIK 9/1IC TECTUTIK MBICAJIFa KOJITAHBLIA IbI.

Tyiiinai ce3aep: ChI3BIKTHIK €MeC €Ki HYKTell MeTTiK ecen, Kyma0aeBThIH napaMeTpIaey dJicl,
KETKUTIKTI IIapTTap, OKIIAyJaHFaH LIeIiM, CaHIbIK 9/iC

C.M. TemeumeBa
Mopandukanus aJroputMoB MeToga napamerpusanum /JsxkymadaeBa
U YUCJICHHBIN MeTO/

AHHoTanusi. B cratbe paccmaTtpuBaercs o1Ha MOJU(HKAIMS aJrOPUTMOB METOAA IMapame-
tpuzamuu JI.C. [IxymabaeBa. JlOomONHHUTENbHBIE MapaMeTPhl BBOASTCS BO BHYTPEHHHUX TOYKAX
pa3bueHust oTpe3ka U Ha 000OMX KOHIAX orpeska. [IpuBeneHb! 10CTaTOYHBIE YCIOBHS CXOAMMOCTH
3TUX aJITOPUTMOB B TEPMUHAX MUCXOJHBIX JaHHBIX. C MOMOIIBIO TPaBOK YacTH cucTteMsl Tuddepen-
[UAIBHBIX ypaBHEHUH W (YHKIMHM KpPAaeBOIO YCIOBHs IOCTPOCHO HETUHEHHOE OIepaTOpHOe
ypaBHEHHE I HaXOXKACHUS HaYaJIbHBIX NMPUOIMKEHUH HEU3BECTHBIX MapaMmeTpoB. [Ipemnaraercs
YUCJICHHBIM METOJ HAaxXOXJEHUs PCIICHWS HEIUHEWHOM JBYXTOYEYHOM KpacBOM 3amauu Jyisd
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cHCcTeMbl OOBIKHOBEHHBIX IU(p(epeHInalbHBIX ypaBHEHUH. UHMCICHHBIM METOJ| peanu30BaH Ha
TECTOBOM IIPUMEDE.

KuiroueBble ci10Ba: HelnuHEHHas [BYXTOYEYHAs KpaeBas 3ajada, METOJ IapaMeTpU3aluU
JlxymabaeBa, 1OCTaTOUHBIE YCIOBUS, U30JIMPOBAHHOE PELICHUE, YUCIECHHBIN METO.
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SINGULAR BOUNDARY VALUE PROBLEMS
FOR A NONLINEAR DIFFERENTIAL EQUATION

Abstract. The paper deals with a nonlinear ordinary differential equation with singularities at the end-
points of a finite interval. The definition of a limit with a weight solution is introduced and its attracting
property is established. A singular boundary value problem for the differential equation is studied, where the
boundary condition imposed on a solution is the requirement of its belonging to a functional ball centered at
the limit solution.

Key words: nonlinear differential equation, singular boundary value problem, limit with a weight solu-
tion, approximation.

On (0.T), we consider a differential equation
2= fe) R, llxll =
dr_f x) xeR5, xll = max; 1 |x;]. (1)

where fit.x): (0.T) x " — K" is a continuous function with singularities at the endpoints mentioned
in what follows in condition C,.

Equations with singularities at the endpoint are often encountered in applications. Various
problems for such equations have been studied by numerous authors (see [1-3] and references there-
in). To investigate the behavior of solutions of (1) at singular points, one can use so-called “limit
solutions”.

In [4], for a nonlinear differential equation considered on the whole real line, the concept of a

“limit solution as t = @ was introduced. The conditions were established under which all solutions

to the differential equation that belong to a functional ball coincide with a limit solution as t — .
Using Lyapunov transformations and limit solutions, regular two-point boundary value problems
were constructed that allow us, to a given degree of accuracy, to determine the restrictions of solu-
tions bounded on the whole real line to a finite interval. To this end, iterative processes for un-
bounded operator equations [6] and the results obtained in [7] were used where analogous problems
were studied for a linear ordinary differential equation.

It was proved that, under certain assumptions about the right-hand side of the equation, the lim-

it solution x;(t) possesses an attracting property; i.e. there exists a functional ball centered at x,(t)
where the differential equation has at least one solution, and all solutions from this ball coincide
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