
Volume 2, Issue 4
March 2021

ISSN 2708-2032
e-ISSN 2708-2040

TECHNOLOGIES

ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БIЛIМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛIГI
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

INTERNATIONAL JOURNAL OF
INFORMATION AND COMMUNICATION

TECHNOLOGIES

МЕЖДУНАРОДНЫЙ ЖУРНАЛ
ИНФОРМАЦИОННЫХ И

КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

ХАЛЫҚАРАЛЫҚ АҚПАРАТТЫҚ ЖӘНЕ
КОММУНИКАЦИЯЛЫҚ

ТЕХНОЛОГИЯЛАР ЖУРНАЛЫ

Том 2, Выпуск 8
December 2021

ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БIЛIМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛIГI
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БIЛIМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛIГI
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

INTERNATIONAL JOURNAL OF
INFORMATION AND COMMUNICATION

TECHNOLOGIES

МЕЖДУНАРОДНЫЙ ЖУРНАЛ
ИНФОРМАЦИОННЫХ И

КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

ХАЛЫҚАРАЛЫҚ АҚПАРАТТЫҚ ЖӘНЕ
КОММУНИКАЦИЯЛЫҚ

ТЕХНОЛОГИЯЛАР ЖУРНАЛЫ

Том 6, Выпуск 2
Июнь 2021

INTERNATIONAL JOURNAL OF
INFORMATION AND COMMUNICATION

TECHNOLOGIES

МЕЖДУНАРОДНЫЙ ЖУРНАЛ
ИНФОРМАЦИОННЫХ И

КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

ХАЛЫҚАРАЛЫҚ АҚПАРАТТЫҚ ЖӘНЕ
КОММУНИКАЦИЯЛЫҚ

ТЕХНОЛОГИЯЛАР ЖУРНАЛЫ

Том 2, Выпуск 7
September 2021

Главный редактор – Ректор АО МУИТ, Заместитель главного редактора –
к.ф.-м.н. Проректор по НиМД, PhD, ассоц. профессор
Хикметов А.К. Дайнеко Е.А.

Отв. секретарь – Директор департамента по науке, к.т.н., ассоц.профессор
Ипалакова М.Т.

ЧЛЕНЫ РЕДКОЛЛЕГИИ:

Отельбаев М.О., д.ф.-м.н., профессор, АО «МУИТ», Рысбайулы Б., д.ф.-м.н., профессор,
АО «МУИТ», Синчев Б.К., д.т.н., профессор, АО «МУИТ», Дузбаев Н.Т., PhD, проректор
по ЦиИ, АО «МУИТ», Сейлова Н.А., к.т.н., декан ФКТК, АО «МУИТ», Мухамедиева А.Г.,
к.э.н., декан ФЦТ, АО «МУИТ», Ыдырыс А., PhD, заведующий кафедрой «МКМ», АО
«МУИТ», Саксенбаева Ж.С., к.т.н., заведующий кафедрой «ИС», АО «МУИТ», Шильди-
беков Е.Ж., PhD, заведующий кафедрой «ЭиБ», АО «МУИТ», Аманжолова С.Т., к.т.н., за-
ведующий кафедрой «КБ», АО «МУИТ», Ниязгулова А.А., к.ф.н., заведующий кафедрой
«МиИК», АО «МУИТ», Айтмагамбетов А.З., к.т.н., профессор, АО «МУИТ», Джоламанова
Б.Д., ассоциированный профессор, АО «МУИТ», Разак А., PhD, профессор, АО «МУИТ»,
Алмисреб А.А., PhD, ассоциированный профессор, АО «МУИТ», Мохамед А.Н., PhD, ассо-
циированный профессор, АО «МУИТ», Prof. Young Im Cho, PhD, Gachon University (South
Korea), Prof. Michele Pagano, PhD, University of Pisa (Italy), Tadeusz Wallas, PhD, D.Litt., Adam
Mickiewicz University in Poznań (Poland), Тихвинский В.О., д.э.н., профессор, МТУСИ (Рос-
сия), Масалович А., к.ф.-м.н., Президент Консорциума Инфорус (Россия), Lucio Tommaso De
Paolis, Research Director of the Augmented and Virtual Laboratory (AVR Lab), Department of
Engineering for Innovation, University of Salento (Italy), Prof. Liz Bacon, Deputy Principal and
Deputy Vice-Chancellor, Abertay University (Great Britain).

Издание зарегистрировано Министерством информации и общественного развития
Республики Казахстан. Свидетельство о постановке на учет No KZ82VPY00020475 от 20.02.2020
г.

Журнал зарегистрирован в Международном центре по регистрации сериальных изданий ISSN
(ЮНЕСКО, г. Париж, Франция)

Выходит 4 раза в год.

УЧРЕДИТЕЛЬ:
АО «Международный университет информационных технологий»

ISSN2708-2032 (print)
ISSN2708-2040 (online)

International Journal of Information and Communication Technologies, №8 (2), December, 2021

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

СОДЕРЖАНИЕ

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

Кожахметова Б.А., Губский Д.С., Дайнеко Е.А., Ипалакова М.Т.
Численно-математическое моделирование современных устройств СВЧ и КВЧ диапазонов на примере
микрополоскового резонатора...6

Мубаракова С.Р., Аманжолова С.Т., Ускенбаева Р.К.
Актуальность кибербезопасности в современном мире...12

Разак А., Әділ А.Ж., Аманжолова С.Т.

Новый инструмент для обнаружения взлома Wi-Fi на основе технологии блокчейн...................................18

ЦИФРОВЫЕ ТЕХНОЛОГИИ В ЭКОНОМИКЕ И МЕНЕДЖМЕНТЕ

Аукен В.М.
Анализ взаимодействия государственных доходов и аудита...38

Бердыкулова Г.М.
Методология преподавания экономических дисциплин в цифровую эру..42

ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ

Элле В.Ж., Мелисова Л.Т., Куандыков А.А., Куатбаева А.А., Аманбайқызы З.

Свойства реальных бизнес-процессов с точки зрения проектирования...49
Кошимбай А.Б., Молдагулова А.Н.
Исследование метода анализа и обработки данных социальных сетей с целью определения
тональности...55
Базарбеков И.М., Шарипов Б.Ж.
разработка бизнес-процесса для получения онлайн услуг в организации образования62

Жунусов Д.О., Алиаскаров С.Ж.
метод классификации текстов на основе алгоритмов машинного обучения...69

МАТЕМАТИЧЕСКОЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Синчев Б.
О полиномиальной разрешимости класса np-complete...75

International Journal of Information and Communication Technologies, №8 (2), December, 2021

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

CONTENTS

INFORMATION AND COMMUNICATION NETWORKS, CYBERSECURITY

Kozhakhmetova B.A., Gubsky D.S., Daineko Y.A., Ipalakova M.T.
Numerical and mathematical modeling of modern devices of UHF and EHF bands on the example
of a microstrip resonator...6

Mubarakova S.R., Amanzholova S.T., Uskenbayeva R.K.
Relevance of cybersecurity in the modern world...12
Razaque A., Adil A. Zh., Amanzholova S.T., Valiyev B.B.
Blockchain technology-featured novel air-cracking tool for wi-fi hacking detection..18

DIGITAL TECHNOLOGIES IN ECONOMICS AND MANAGEMENT

Auken V.M.

Interaction analysis of government revenue and audit...38

Berdykulova G.M.
Methodology of teaching the economic disciplines in digital era..42

INTELLIGENT SYSTEMS

Elle V., Melissova L., KuandykovA.A., Kuatbayeva A.A., Amanbaikyzy Z.
Properties of real business processes from a design point of view...49
Коshimbay A.B., Moldagulova A.N.
Research method of analyzing and processing social network data in order to determine the tonality.................55

Bazarbekov I.M., Sharipov B.Zh.
development of a business process for obtaining online services in the organization of education62

Zhunissov D.O., Aliaskarov S.Zh.
method for text classification based on machine learning algorithms ...69

MATHEMATICAL AND COMPUTER MODELING

Sinchev B.

On polynomial decision of class NP-complete..75

International Journal of Information and Communication Technologies, №8 (2), December, 2021

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

МАЗМҰНЫ

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

Кожахметова Б.А., Губский Д.С., Дайнеко Е.А., Ипалакова М.Т.
Микрожолақты резонатор мысалында АЖЖ және ЕЖЖ диапазондарының заманауи құрылғыларын
сандық-математикалық үлгілеу...6

Мубаракова С.Р., Аманжолова С.Т., Ускенбаева Р.К.
Қазіргі әлемдегі кибер қауіпсіздіктің өзектілігі...12
Разак А., Әділ А.Ж., Аманжолова С.Т.
Блокчейн технологиясына негізделген Wi-Fi хакерін анықтаудың жаңа құралы..18

ЭКОНОМИКАДАҒЫ ЖӘНЕ МЕНЕДЖМЕНТТЕГІ ЦИФРЛЫҚ ТЕХНОЛОГИЯЛАР

Аукен В.М.

Мемлекеттік кірістер және аудиттің өзара әсерлері..38

Бердіқұлова Ғ.М.
Цифрлық дәуірде экономиканы оқыту әдістемесі..42

ИНТЕЛЛЕКТУАЛДЫ ЖҮЙЕЛЕР

Элле В.Ж., Мелисова Л.Т., Куандыков А.А., Куатбаева А.А., Аманбайқызы З.

Жобалау тұрғысынан нақты бизнес-процестердің қасиеттері...49
Көшімбай А.Б., Молдагулова А.Н.
Тоналдылықты анықтау мақсатында әлеуметтік желілердің деректерін талдау және өңдеу
әдісін зерттеу...55
Базарбеков И.М., Шарипов Б.Ж.
Білім беру ұйымында онлайн қызмет кӛрсету үшін бизнес-процессін дамыту...62
Жунусов Д.О., Алиаскаров С.Ж.
Машинналық оқыту алгоритмдері негізінде мəтіндер классификациясының əдісі......................................69

МАТЕМАТИКАЛЫҚ ЖӘНЕ КОМПЬЮТЕРЛІК МОДЕЛЬДЕУ

Синчев Б.
NP-complete сыныптың полиномиялық шешімі туралы...75

International Journal of Information and Communication Technologies, №8 (2), December, 2021
18

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

INTERNATIONAL JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGIES
ISSN 2708–2032 (print)
ISSN 2708–2040 (online)
Vol. 2. Іs. 4. Number 08 (2021). Рр. 18–37
Journal homepage: https://journal.iitu.edu.kz
https://doi.org/10.54309/IJICT.2021.08.4.003
УДК 004.056.56

Razaque A.*, Adil A. Zh., Amanzholova S.T., Valiyev B.B.
International Information Technology University, Almaty, Kazakhstan

BLOCKCHAIN TECHNOLOGY-FEATURED NOVEL AIR-CRACKING
TOOL FOR WI-FI HACKING DETECTION

Abstract. Wi-Fi plays an important role in promoting several application domains such as
business, education, industry, etc. On the other hand, if not handled properly, vulnerabilities of Wi-Fi cause
damage to the privacy and confidentiality of the users. Some of the hackers use the Linux tool to exploit the
vulnerability of Wi-Fi that allows of the hacking process. In this paper, we introduce a Blockchain
Technology-Featured Novel Air-Cracking (BTFAT) method to detect the Linux tool for Wi-Fi security
improvement. The proposed BTFAT consists of valuable features (e.g., monitoring, scanning, cracking, and
testing) which help detect the Linux tool. The BTFAT is programmed on the C platform. Based on the
experimental results, the BTFAT produces higher performance as compared to other existing methods.

Keywords: Wi-Fi, vulnerability, BTFAT, privacy, reliability, testing, blockchain technology

 Introduction
Wireless networks are now used everywhere. Wi-Fi is used not only by individual users but also

by organizations and companies. Wireless networks are embedded in many areas of our life: social
networks, business, work, finance (online payments, banking applications) [1-2].

Wi-Fi can make people's daily lives easier, improve the productivity of many companies, and make it
easier for employees to work. But there is also a downside, this is the risk of leakage of confidential
information through hacking Wi-Fi [6-7]. Many people, users of various social networks and messengers
such as Instagram, Facebook, Twitter, WhatsApp, etc., store their data (photos, correspondence, card
data) in their accounts. Hackers can hack Wi-Fi through various attacks and use sniffers to intercept
traffic, thus gaining access to personal data. The same situation is possible in large business and financial
organizations. This can lead to large financial losses for companies or banks [8-9]. Although networks with
blockchain technology have a high level of security, they are also susceptible to hacking by intruders. This
may lead to the loss of personal data of users or financial losses of companies and organizations [10-11].

 As business depends on data, data acquisition speed and accuracy are crucial. The blockchain is perfect
for conveying such information because it offers to authorize members of the network an instant, shared and
fully transparent access to information in the register unchanged [3]. The blockchain network allows users to
track orders, payments, accounts, products, and more. And since all participants share access to a single
source of reliable data, it is possible to view all transaction details at any time to work with greater
confidence and gain new benefits and opportunities [4-5].

Recently, many studies have been conducted in the field of hacking Wi-Fi using Linux tools, respectively,
there are many solutions to this problem. Wi-Fi hacking using the Wireshark traffic analyzer is based
on packet capture (PCAP) [12-13], the WPAclean utility uses a four-way handshake method and a
beacon to clear capture files [14-15], there are also Linux tools such as Reaver, which uses a WPS
connection as a vulnerability to analyze and hack the network [18-19]. The Wifite tool is designed for
hacking a network with various encryption algorithms WEP, WPA, WPA2. Wifite uses a set of attacks on
Wi-Fi, including brute-force passwords, handshake capture [16-17]. For network hacking, the Wifite tool has
flexible settings [20-21]. Motivated by these challenges, the contributions of this paper are summarized as
follows:

- the definition of vulnerability for hacking wireless networks using the technology of the
Blockchain-Featured Aircrack-ng.

- hacking a wireless network with blockchain technology in practice.
Billions of users and businesses connect to the global network, use Wi-Fi and networks with blockchain

technology. As a result, security becomes the most important issue. The main problem is to investigate the
vulnerabilities of blockchain networks and based on the detected vulnerabilities, describe recommendations for
protection against hacking, so that users and organizations can be less vulnerable to security attacks [22-23].

The following steps should be considered in investigating security issues against Wi-Fi hacking: (a)
investigation of various security mechanisms available for WPA/WPA2 using BTFAT, (b) investigation of

International Journal of Information and Communication Technologies, №8 (2), December, 2021
19

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

vulnerabilities in real-time using the BTFAT, and (c) determining the method of hacking [24-24]. We aim to
address these issues and use these solutions in our practical results to make the use of Wi-Fi safer.

The remainder of the paper is organized as follows.
Section II briefly describes the problem and explains its significance. Section III highlights the previous

research findings. Section IV describes the state-of-the-art system model. Section V proposes a way of Wi-Fi
hacking vulnerabilities using the BTFAT process.

 Section VI presents the experimental results and implementation. Section VII gives the discussion of the
results. Finally, the conclusions of the paper are presented in Section VIII.

Problem identification
The main problem of this research work is hacking Wi-Fi with Linux using the “Krack” vulnerability

(Key Reinstall Attacks). The real problem is researching and finding Wi-Fi vulnerabilities such as incorrectly
configured access points, devices with weak encryption keys, impersonating an authorized user. Actions
required to resolve this issue:

- to study vulnerabilities and hacking of the Wi-Fi network, then to select the appropriate tool;
- to find the target to attack;
- to check the impact of Pixie dust;
- then to run a full password search. If the PIN code is received but the WPA password is not displayed, to

run the commands to get the Wi-Fi password.
Causes for hacking Wi-Fi can be open ports, lack of password protection or weak password protection,

lack of data encryption, lack of programs for scanning the network, lack of special services to protect them
from attacks. The effects of these causes can be gaining access to the network, interception of network data,
commission of various attacks, theft of personal data, interception of passwords, spoofing of the network. The
importance of the problem studied in this research paper is that Wi-Fi hacking must be performed as a test of
the network and detection of its vulnerabilities to further improve the security of the network perimeter. There
are several solutions for hacking Wi-Fi in the form of various attacks such as hacking WPA / WPA2 passwords,
attacking WEP, hacking WPS pin, lowering WPA, replacing the true access point with a fake one, fraudulent
access point, attacking Wi-Fi access points from global and local networks, denial of service attacks (DoS
Wi-Fi), attacks on specific services and functions of routers. An optimistic solution to this problem is to use
multiple attacks in combination. This can be implemented using the Linux tool or utility, which includes several
or all of the listed kinds of attacks.

Related work
In this section the prominent features of the existing current approaches are summarized.
The main tools for hacking Wi-Fi using Linux are discussed by Sharma [26]. AirSnort uses special algorithms

to sort out the password, namely, it analyzes each packet in the network, and when intercepting the required
number of data, it decrypts the password from them. AirSnort is available for windows. However, there is one
shortcoming - the utility only works with WEP networks.

Bullock & Jeff [27] described the use of packet sniffers Ettercap, Dsniff, and Wireshark for hacking Wi-
Fi. Packet sniffers are designed to capture and analyze network traffic. The advantages of traffic analyzers are
that they work with the vast majority of known protocols, have a clear and logical graphical interface based
on GTK+, and a powerful filter system. Traffic analyzers are also cross-platform and work on such operating
systems as Linux, Solaris, FreeBSD, NetBSD, OpenBSD, Mac OS X, and Windows. The disadvantage of these
analyzers when hacking Wi-Fi is the need to possess certain skills and abilities in decrypting captured packets.
In addition, it is possible to capture packets only in real time.

Li et al. [28] introduces another tool called Reaver for hacking wireless networks that targets certain WPS
vulnerabilities. Reaver performs brute force attacks against WPS and registers PIN codes to recover the WPA
/ WPA2 passphrase. Since many router manufacturers and Internet service providers activate WPS by default,
many routers are vulnerable. The disadvantage is that WPS can be disabled.

Wifite is a tool designed to attack multiple wireless networks encrypted using WEP / WPA / WPA2 and
WPS. Some parameters are required when WiFite starts working. It records WPA handshakes, automatically
disables authentication of connected clients and saves their hacked codes. Hacking Wi-Fi using the Wifite tool
is discussed by Sinha [29]. Crunch is a very good and easy-to-use tool for creating custom word lists that can
be used in dictionary attacks. Since the success rate of dictionary attacks depends on the quality of the word
list, it is impossible to avoid creating your own word lists. The method of hacking the network with the Crunch
tool is described by Santo Orcero [30].

International Journal of Information and Communication Technologies, №8 (2), December, 2021
20

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

MacChanger is a small utility that spoofs a media access control (MAC) address in an arbitrary MAC
address. Spoofing the MAC address for Wi-Fi hacking may be necessary to avoid MAC filters or hide the
hacker's identity in the wireless network. MacСhanger’s Wi-Fi hacking approach is discussed by Sinha [31].
After studying these network hacking tools, we have determined that all these tools are essential. However, the
above tools have several disadvantages. The disadvantages are that some of these tools can crack only certain
encryption algorithms of wireless networks, most of the above tools intercept traffic and hack networks in real
time, only at the time of user activity, and have fewer methods for analyzing and hacking a wireless network.
But our network hacking tool is not only easy to use, but also has many built-in features for hacking WPA/
WPA2/WEP.

System model
The Blockchain technology-featured Aircrack-ng tool is of utmost importance. It successfully detects the

Linux tool for Wi-Fi. The BTFAT consists of the features depicted in Figure 1. The features include airdecap-
ng, airmon-ng, aireplay-ng, airodump-ng, etc. The airdecap-ng feature decrypts intercepted traffic with a known
key, the airmon-ng package puts the network card in the monitoring mode, the airodump-ng feature is a traffic
analyzer, it adds traffic to Packet Capture (PCAP) or initialization vectors (IVs) files and shows information
about the network. Some of these features are greatly valuable in the Wi-Fi hacking process.

Blockchain Technology-
Featured Aircrack-ng ToolAirdecap-ng

Airodump-ngAireplay-ngAirmon-ng

Packetforge-ngAirdecloak-ng

Airtun-ng

Figure 1 - Components of the Linux BTFAT

To hack Wi-Fi using the BTFAT, the hacker first connects to the Wi-Fi adapter and determines the network
interfaces. To do this, the airmon-ng package defines the available network interfaces, as well as the driver.
If the network interface driver is detected as a result of the command execution, the network is monitored.
Otherwise, the driver is debugged. Network monitoring is performed by the airmon-ng feature as a result of
network monitoring, a message should appear indicating that the monitoring mode was successfully enabled
on the previously defined interface. Then, using the airodump-ng feature, the listening mode is enabled to
determine the available Wi-Fi networks. As a result, the screen displays a list of wireless networks within the
range of the Wi-Fi adapter. The screen also displays important characteristics for network hacking, such as
the encryption used (WEP, WPA/WPA2), channel, and basic service set id (BSSID). Knowing the necessary
information about the network, packets are captured using the airodump-ng package containing the encrypted
password. When capturing packets, it is important to capture many IVs packets over 1000. The waiting time
depends on the network activity. If no one is connected to the access point, the time may be delayed.

International Journal of Information and Communication Technologies, №8 (2), December, 2021
21

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

Figure 2 - The process of hacking Wi-Fi using the BTFAT

The distance to the access point is not as important as the network activity. To reduce the time
for collecting packets, the client logs in. After successful de-authorization of the client, the hacker
receives an intercepted handshake. Next, the hacker performs a brute-force hacking using a password
dictionary. The process of hacking Wi-Fi using the aircrack-ng tool is depicted in Figure 2.

Figure 3 explains the system model of the Wi-Fi hacking process using the BTFAT and depicts
a second (fake) access point created by the hacker during Wi-Fi hacking process. Using this access
point, the hacker de-authorizes the user through multiple requests. After reconnecting the user from
the real network to the access point created by the hacker, the hacker initiates the handshake. Based
on the received handshake, it is possible to hack the network and decrypt the password.

Figure 2 - The process of hacking Wi-Fi using the BTFAT

The distance to the access point is not as important as the network activity. To reduce the time for collecting
packets, the client logs in. After successful de-authorization of the client, the hacker receives an intercepted
handshake. Next, the hacker performs a brute-force hacking using a password dictionary. The process of
hacking Wi-Fi using the aircrack-ng tool is depicted in Figure 2.

Figure 3 explains the system model of the Wi-Fi hacking process using the BTFAT and depicts a second
(fake) access point created by the hacker during Wi-Fi hacking process. Using this access point, the hacker de-
authorizes the user through multiple requests. After reconnecting the user from the real network to the access
point created by the hacker, the hacker initiates the handshake. Based on the received handshake, it is possible
to hack the network and decrypt the password.

Figure 3 - System model

Proposed Wi-Fi hacking using the BTFAT process
The method proposed for hacking Wi-Fi uses the BTFAT. Before the Wi-Fi is hacked, methods

are studied to protect the network. To protect Wi-Fi networks, several well-known methods are used,
such as access restriction and authentication methods. This research paper discusses the method of
hacking Wi-Fi, which uses the authentication method as a network protection. In turn, authentication
methods for network protection are classified: open authentication, Shared Key Authentication (WEP
encryption), Mac address authentication, Wi-Fi protected access (WPA), Wisconsin-Internet
protected Access2 (WPA2), Cisco Centralized Key Management (CCKM). The BTFAT breaks WEP,
WPA, and WPA2 keys. The process of hacking Wi-Fi with the BTFAT consists of three phases:

- packet-capturing and saving processes
- client de-authorization process
- Wi-Fi blockchain-featured hacking process

A. Packet-capturing and saving processes
This process is implemented at the beginning and is necessary for collecting IVs data packets.

During this process, the network is monitored, as a result of which there are available network
interfaces. After that, the hacker connects to them and captures the packets. Then all packages are
saved in a single file. IVs packets contain the necessary information to decrypt the password of the
required network. Packet-capturing and saving processes are presented in Table 1.

Table 1 - Packet-capturing and saving processes

Algorithm-1: Packet-Capturing and Saving Processes

1. Initialization: {𝑁𝑁𝑐𝑐: Network Channel; 𝑀𝑀𝑝𝑝𝑝𝑝: MAC address of Access
Point; 𝐼𝐼: Interface; 𝑃𝑃𝑐𝑐𝑐𝑐: Packets-captured file; 𝐿𝐿𝑡𝑡: Linux tool; 𝑁𝑁𝑚𝑚: Network monitoring;
𝑁𝑁: Network; 𝐹𝐹𝑜𝑜: Folder; P: Packets}

2. Input: {𝑁𝑁𝑐𝑐, 𝑀𝑀𝑝𝑝𝑝𝑝, I}
3. Output: {𝑃𝑃𝑐𝑐𝑐𝑐}
4. Set 𝑁𝑁𝑐𝑐 , 𝑀𝑀𝑝𝑝𝑝𝑝, 𝐼𝐼
5. Do Process 𝑁𝑁𝑚𝑚𝜖𝜖 𝑵𝑵 ← 𝐿𝐿𝑡𝑡
6. While 𝑁𝑁𝑚𝑚 𝜖𝜖 𝑵𝑵 < 1

Figure 3 - System model

International Journal of Information and Communication Technologies, №8 (2), December, 2021
22

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

Proposed Wi-Fi hacking using the BTFAT process
The method proposed for hacking Wi-Fi uses the BTFAT. Before the Wi-Fi is hacked, methods are studied

to protect the network. To protect Wi-Fi networks, several well-known methods are used, such as access
restriction and authentication methods. This research paper discusses the method of hacking Wi-Fi, which uses
the authentication method as a network protection. In turn, authentication methods for network protection are
classified: open authentication, Shared Key Authentication (WEP encryption), Mac address authentication, Wi-
Fi protected access (WPA), Wisconsin-Internet protected Access2 (WPA2), Cisco Centralized Key Management
(CCKM). The BTFAT breaks WEP, WPA, and WPA2 keys. The process of hacking Wi-Fi with the BTFAT
consists of three phases:

- packet-capturing and saving processes
- client de-authorization process
- Wi-Fi blockchain-featured hacking process
A. Packet-capturing and saving processes
This process is implemented at the beginning and is necessary for collecting IVs data packets. During this

process, the network is monitored, as a result of which there are available network interfaces. After that, the
hacker connects to them and captures the packets. Then all packages are saved in a single file. IVs packets
contain the necessary information to decrypt the password of the required network. Packet-capturing and saving
processes are presented in Table 1.

Table 1 - Packet-capturing and saving processes
Algorithm-1: Packet-Capturing and Saving Processes
1. Initialization: {Nc: Network Channel; Mpa: MAC address of Access Point; I: Interface; Pcf : Packets-

captured file; Lt : Linux tool; Nm: Network monitoring; N: Network; F0: Folder; P: Packets}
2. Input: {Nc , Mpa, I}
3. Output: {Pcf }
4. Set Nc , Mpa, I
5. Do Process Nm

Figure 3 - System model

Proposed Wi-Fi hacking using the BTFAT process
The method proposed for hacking Wi-Fi uses the BTFAT. Before the Wi-Fi is hacked, methods

are studied to protect the network. To protect Wi-Fi networks, several well-known methods are used,
such as access restriction and authentication methods. This research paper discusses the method of
hacking Wi-Fi, which uses the authentication method as a network protection. In turn, authentication
methods for network protection are classified: open authentication, Shared Key Authentication (WEP
encryption), Mac address authentication, Wi-Fi protected access (WPA), Wisconsin-Internet
protected Access2 (WPA2), Cisco Centralized Key Management (CCKM). The BTFAT breaks WEP,
WPA, and WPA2 keys. The process of hacking Wi-Fi with the BTFAT consists of three phases:

- packet-capturing and saving processes
- client de-authorization process
- Wi-Fi blockchain-featured hacking process

A. Packet-capturing and saving processes
This process is implemented at the beginning and is necessary for collecting IVs data packets.

During this process, the network is monitored, as a result of which there are available network
interfaces. After that, the hacker connects to them and captures the packets. Then all packages are
saved in a single file. IVs packets contain the necessary information to decrypt the password of the
required network. Packet-capturing and saving processes are presented in Table 1.

Table 1 - Packet-capturing and saving processes

Algorithm-1: Packet-Capturing and Saving Processes

1. Initialization: {𝑁𝑁𝑐𝑐: Network Channel; 𝑀𝑀𝑝𝑝𝑝𝑝: MAC address of Access
Point; 𝐼𝐼: Interface; 𝑃𝑃𝑐𝑐𝑐𝑐: Packets-captured file; 𝐿𝐿𝑡𝑡: Linux tool; 𝑁𝑁𝑚𝑚: Network monitoring;
𝑁𝑁: Network; 𝐹𝐹𝑜𝑜: Folder; P: Packets}

2. Input: {𝑁𝑁𝑐𝑐, 𝑀𝑀𝑝𝑝𝑝𝑝, I}
3. Output: {𝑃𝑃𝑐𝑐𝑐𝑐}
4. Set 𝑁𝑁𝑐𝑐 , 𝑀𝑀𝑝𝑝𝑝𝑝, 𝐼𝐼
5. Do Process 𝑁𝑁𝑚𝑚𝜖𝜖 𝑵𝑵 ← 𝐿𝐿𝑡𝑡
6. While 𝑁𝑁𝑚𝑚 𝜖𝜖 𝑵𝑵 < 1

 N

Figure 3 - System model

Proposed Wi-Fi hacking using the BTFAT process
The method proposed for hacking Wi-Fi uses the BTFAT. Before the Wi-Fi is hacked, methods

are studied to protect the network. To protect Wi-Fi networks, several well-known methods are used,
such as access restriction and authentication methods. This research paper discusses the method of
hacking Wi-Fi, which uses the authentication method as a network protection. In turn, authentication
methods for network protection are classified: open authentication, Shared Key Authentication (WEP
encryption), Mac address authentication, Wi-Fi protected access (WPA), Wisconsin-Internet
protected Access2 (WPA2), Cisco Centralized Key Management (CCKM). The BTFAT breaks WEP,
WPA, and WPA2 keys. The process of hacking Wi-Fi with the BTFAT consists of three phases:

- packet-capturing and saving processes
- client de-authorization process
- Wi-Fi blockchain-featured hacking process

A. Packet-capturing and saving processes
This process is implemented at the beginning and is necessary for collecting IVs data packets.

During this process, the network is monitored, as a result of which there are available network
interfaces. After that, the hacker connects to them and captures the packets. Then all packages are
saved in a single file. IVs packets contain the necessary information to decrypt the password of the
required network. Packet-capturing and saving processes are presented in Table 1.

Table 1 - Packet-capturing and saving processes

Algorithm-1: Packet-Capturing and Saving Processes

1. Initialization: {𝑁𝑁𝑐𝑐: Network Channel; 𝑀𝑀𝑝𝑝𝑝𝑝: MAC address of Access
Point; 𝐼𝐼: Interface; 𝑃𝑃𝑐𝑐𝑐𝑐: Packets-captured file; 𝐿𝐿𝑡𝑡: Linux tool; 𝑁𝑁𝑚𝑚: Network monitoring;
𝑁𝑁: Network; 𝐹𝐹𝑜𝑜: Folder; P: Packets}

2. Input: {𝑁𝑁𝑐𝑐, 𝑀𝑀𝑝𝑝𝑝𝑝, I}
3. Output: {𝑃𝑃𝑐𝑐𝑐𝑐}
4. Set 𝑁𝑁𝑐𝑐 , 𝑀𝑀𝑝𝑝𝑝𝑝, 𝐼𝐼
5. Do Process 𝑁𝑁𝑚𝑚𝜖𝜖 𝑵𝑵 ← 𝐿𝐿𝑡𝑡
6. While 𝑁𝑁𝑚𝑚 𝜖𝜖 𝑵𝑵 < 1

 Lt
6. While Nm

Figure 3 - System model

Proposed Wi-Fi hacking using the BTFAT process
The method proposed for hacking Wi-Fi uses the BTFAT. Before the Wi-Fi is hacked, methods

are studied to protect the network. To protect Wi-Fi networks, several well-known methods are used,
such as access restriction and authentication methods. This research paper discusses the method of
hacking Wi-Fi, which uses the authentication method as a network protection. In turn, authentication
methods for network protection are classified: open authentication, Shared Key Authentication (WEP
encryption), Mac address authentication, Wi-Fi protected access (WPA), Wisconsin-Internet
protected Access2 (WPA2), Cisco Centralized Key Management (CCKM). The BTFAT breaks WEP,
WPA, and WPA2 keys. The process of hacking Wi-Fi with the BTFAT consists of three phases:

- packet-capturing and saving processes
- client de-authorization process
- Wi-Fi blockchain-featured hacking process

A. Packet-capturing and saving processes
This process is implemented at the beginning and is necessary for collecting IVs data packets.

During this process, the network is monitored, as a result of which there are available network
interfaces. After that, the hacker connects to them and captures the packets. Then all packages are
saved in a single file. IVs packets contain the necessary information to decrypt the password of the
required network. Packet-capturing and saving processes are presented in Table 1.

Table 1 - Packet-capturing and saving processes

Algorithm-1: Packet-Capturing and Saving Processes

1. Initialization: {𝑁𝑁𝑐𝑐: Network Channel; 𝑀𝑀𝑝𝑝𝑝𝑝: MAC address of Access
Point; 𝐼𝐼: Interface; 𝑃𝑃𝑐𝑐𝑐𝑐: Packets-captured file; 𝐿𝐿𝑡𝑡: Linux tool; 𝑁𝑁𝑚𝑚: Network monitoring;
𝑁𝑁: Network; 𝐹𝐹𝑜𝑜: Folder; P: Packets}

2. Input: {𝑁𝑁𝑐𝑐, 𝑀𝑀𝑝𝑝𝑝𝑝, I}
3. Output: {𝑃𝑃𝑐𝑐𝑐𝑐}
4. Set 𝑁𝑁𝑐𝑐 , 𝑀𝑀𝑝𝑝𝑝𝑝, 𝐼𝐼
5. Do Process 𝑁𝑁𝑚𝑚𝜖𝜖 𝑵𝑵 ← 𝐿𝐿𝑡𝑡
6. While 𝑁𝑁𝑚𝑚 𝜖𝜖 𝑵𝑵 < 1

 N<1
7. Capture P
8. Sum Pcf = P + 1
9. Do Nm = 0
10. Save Pcf to F0
11. End while

Algorithm-1 explains the packing capturing and saving processes. In step 1, variables are initialized for
packet capturing and saving. Steps 2-3 explain the input and output variables respectively. Step 4 uses the
components (e.g., network channel, physical address of the access point and interface) for network monitoring
process. Step 5 shows the process of using Linux tool on the network for network monitoring process. Steps
6-9 shows the entire network monitoring process and attempts to capture the packets, which are stored into the
packet-capturing list. This process continues until the entire network is monitored and all of the packets are
stored into the packet-capturing list. In step 10, the packet-capturing list is saved into folder for further process.

There are several properties that define packet capture:
- the total time it takes to capture packets;
- the average interval between adjacent packets;
- the average packet waiting time.
Definition-1: the average value of the interval between adjacent packets is the average time of packet

captures between the previous and subsequent packets and is calculated by the equation (1):

7. Capture P
8. Sum 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝑃𝑃 + 1
9. Do 𝑁𝑁𝑚𝑚 = 0
10. Save 𝑃𝑃𝑐𝑐𝑐𝑐 to 𝐹𝐹𝑜𝑜
11. End while

Algorithm-1 explains the packing capturing and saving processes. In step 1, variables are
initialized for packet capturing and saving. Steps 2-3 explain the input and output variables
respectively. Step 4 uses the components (e.g., network channel, physical address of the access point
and interface) for network monitoring process. Step 5 shows the process of using Linux tool on the
network for network monitoring process. Steps 6-9 shows the entire network monitoring process and
attempts to capture the packets, which are stored into the packet-capturing list. This process continues
until the entire network is monitored and all of the packets are stored into the packet-capturing list.
In step 10, the packet-capturing list is saved into folder for further process.

There are several properties that define packet capture:
- the total time it takes to capture packets;
- the average interval between adjacent packets;
- the average packet waiting time.

Definition-1: the average value of the interval between adjacent packets 𝜏𝜏𝑎𝑎 is the average time
of packet captures between the previous and subsequent packets and is calculated by the equation (1):

𝜏𝜏𝑎𝑎 = 1
𝑀𝑀 × ∑(𝑎𝑎𝑡𝑡+1 − 𝑎𝑎𝑡𝑡) (1)

𝑀𝑀

𝑠𝑠=0

Where 𝑎𝑎𝑡𝑡: moments of time when packets arrive; 𝑀𝑀: number of analyzed intervals.
Theorem-1: The higher the load on the connection channel, the longer is the total time required

to capture packets.
Proof: The channel load factor is calculated by the equation (2):

𝐿𝐿𝑐𝑐 =
∑ 𝑃𝑃𝑡𝑡
∑ 𝐸𝐸𝑝𝑝

(2)

Where 𝑃𝑃𝑡𝑡: capture time of the packet; 𝐸𝐸𝑝𝑝: end time of processing of the 𝑖𝑖-th packet.
The number of packets and their size (in bytes) and the time of traffic measurement are known.

Then, the total capture time of the packet is equal to:

∑ 𝑃𝑃𝑡𝑡 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉 (3)

Where 𝑃𝑃𝑡𝑡: capture time of the packet; 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets
captured; 𝑉𝑉: packet capture rate.

The total processing time of the 𝑖𝑖-th packet is equivalent to the time of traffic measurement and
is determined by the equation (4):

∑ 𝐸𝐸𝑝𝑝 = 𝜑𝜑 (4)

Where 𝜑𝜑: the time of traffic measurement.
Based on the previous equations, the channel load factor is equal to:

 (1)

Where αt: moments of time when packets arrive; M: number of analyzed intervals.
Theorem-1: The higher the load on the connection channel, the longer is the total time required to capture

packets.
Proof: The channel load factor is calculated by the equation (2):

International Journal of Information and Communication Technologies, №8 (2), December, 2021
23

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

7. Capture P
8. Sum 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝑃𝑃 + 1
9. Do 𝑁𝑁𝑚𝑚 = 0
10. Save 𝑃𝑃𝑐𝑐𝑐𝑐 to 𝐹𝐹𝑜𝑜
11. End while

Algorithm-1 explains the packing capturing and saving processes. In step 1, variables are
initialized for packet capturing and saving. Steps 2-3 explain the input and output variables
respectively. Step 4 uses the components (e.g., network channel, physical address of the access point
and interface) for network monitoring process. Step 5 shows the process of using Linux tool on the
network for network monitoring process. Steps 6-9 shows the entire network monitoring process and
attempts to capture the packets, which are stored into the packet-capturing list. This process continues
until the entire network is monitored and all of the packets are stored into the packet-capturing list.
In step 10, the packet-capturing list is saved into folder for further process.

There are several properties that define packet capture:
- the total time it takes to capture packets;
- the average interval between adjacent packets;
- the average packet waiting time.

Definition-1: the average value of the interval between adjacent packets 𝜏𝜏𝑎𝑎 is the average time
of packet captures between the previous and subsequent packets and is calculated by the equation (1):

𝜏𝜏𝑎𝑎 = 1
𝑀𝑀 × ∑(𝑎𝑎𝑡𝑡+1 − 𝑎𝑎𝑡𝑡) (1)

𝑀𝑀

𝑠𝑠=0

Where 𝑎𝑎𝑡𝑡: moments of time when packets arrive; 𝑀𝑀: number of analyzed intervals.
Theorem-1: The higher the load on the connection channel, the longer is the total time required

to capture packets.
Proof: The channel load factor is calculated by the equation (2):

𝐿𝐿𝑐𝑐 =
∑ 𝑃𝑃𝑡𝑡
∑ 𝐸𝐸𝑝𝑝

 (2)

Where 𝑃𝑃𝑡𝑡: capture time of the packet; 𝐸𝐸𝑝𝑝: end time of processing of the 𝑖𝑖-th packet.
The number of packets and their size (in bytes) and the time of traffic measurement are known.

Then, the total capture time of the packet is equal to:

∑ 𝑃𝑃𝑡𝑡 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉 (3)

Where 𝑃𝑃𝑡𝑡: capture time of the packet; 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets
captured; 𝑉𝑉: packet capture rate.

The total processing time of the 𝑖𝑖-th packet is equivalent to the time of traffic measurement and
is determined by the equation (4):

∑ 𝐸𝐸𝑝𝑝 = 𝜑𝜑 (4)

Where 𝜑𝜑: the time of traffic measurement.
Based on the previous equations, the channel load factor is equal to:

 (2)

Where Pt: capture time of the packet; Ep: end time of processing of the i-th packet.
The number of packets and their size (in bytes) and the time of traffic measurement are known. Then, the

total capture time of the packet is equal to:

7. Capture P
8. Sum 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝑃𝑃 + 1
9. Do 𝑁𝑁𝑚𝑚 = 0
10. Save 𝑃𝑃𝑐𝑐𝑐𝑐 to 𝐹𝐹𝑜𝑜
11. End while

Algorithm-1 explains the packing capturing and saving processes. In step 1, variables are
initialized for packet capturing and saving. Steps 2-3 explain the input and output variables
respectively. Step 4 uses the components (e.g., network channel, physical address of the access point
and interface) for network monitoring process. Step 5 shows the process of using Linux tool on the
network for network monitoring process. Steps 6-9 shows the entire network monitoring process and
attempts to capture the packets, which are stored into the packet-capturing list. This process continues
until the entire network is monitored and all of the packets are stored into the packet-capturing list.
In step 10, the packet-capturing list is saved into folder for further process.

There are several properties that define packet capture:
- the total time it takes to capture packets;
- the average interval between adjacent packets;
- the average packet waiting time.

Definition-1: the average value of the interval between adjacent packets 𝜏𝜏𝑎𝑎 is the average time
of packet captures between the previous and subsequent packets and is calculated by the equation (1):

𝜏𝜏𝑎𝑎 = 1
𝑀𝑀 × ∑(𝑎𝑎𝑡𝑡+1 − 𝑎𝑎𝑡𝑡) (1)

𝑀𝑀

𝑠𝑠=0

Where 𝑎𝑎𝑡𝑡: moments of time when packets arrive; 𝑀𝑀: number of analyzed intervals.
Theorem-1: The higher the load on the connection channel, the longer is the total time required

to capture packets.
Proof: The channel load factor is calculated by the equation (2):

𝐿𝐿𝑐𝑐 =
∑ 𝑃𝑃𝑡𝑡
∑ 𝐸𝐸𝑝𝑝

(2)

Where 𝑃𝑃𝑡𝑡: capture time of the packet; 𝐸𝐸𝑝𝑝: end time of processing of the 𝑖𝑖-th packet.
The number of packets and their size (in bytes) and the time of traffic measurement are known.

Then, the total capture time of the packet is equal to:

∑ 𝑃𝑃𝑡𝑡 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉 (3)

Where 𝑃𝑃𝑡𝑡: capture time of the packet; 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets
captured; 𝑉𝑉: packet capture rate.

The total processing time of the 𝑖𝑖-th packet is equivalent to the time of traffic measurement and
is determined by the equation (4):

∑ 𝐸𝐸𝑝𝑝 = 𝜑𝜑 (4)

Where 𝜑𝜑: the time of traffic measurement.
Based on the previous equations, the channel load factor is equal to:

 (3)

Where Pt: capture time of the packet; B: number of bytes transmitted; N: number of packets captured; V:
packet capture rate.

The total processing time of the i-th packet is equivalent to the time of traffic measurement and is determined
by the equation (4):

7. Capture P
8. Sum 𝑃𝑃𝑐𝑐𝑐𝑐 = 𝑃𝑃 + 1
9. Do 𝑁𝑁𝑚𝑚 = 0
10. Save 𝑃𝑃𝑐𝑐𝑐𝑐 to 𝐹𝐹𝑜𝑜
11. End while

Algorithm-1 explains the packing capturing and saving processes. In step 1, variables are
initialized for packet capturing and saving. Steps 2-3 explain the input and output variables
respectively. Step 4 uses the components (e.g., network channel, physical address of the access point
and interface) for network monitoring process. Step 5 shows the process of using Linux tool on the
network for network monitoring process. Steps 6-9 shows the entire network monitoring process and
attempts to capture the packets, which are stored into the packet-capturing list. This process continues
until the entire network is monitored and all of the packets are stored into the packet-capturing list.
In step 10, the packet-capturing list is saved into folder for further process.

There are several properties that define packet capture:
- the total time it takes to capture packets;
- the average interval between adjacent packets;
- the average packet waiting time.

Definition-1: the average value of the interval between adjacent packets 𝜏𝜏𝑎𝑎 is the average time
of packet captures between the previous and subsequent packets and is calculated by the equation (1):

𝜏𝜏𝑎𝑎 = 1
𝑀𝑀 × ∑(𝑎𝑎𝑡𝑡+1 − 𝑎𝑎𝑡𝑡) (1)

𝑀𝑀

𝑠𝑠=0

Where 𝑎𝑎𝑡𝑡: moments of time when packets arrive; 𝑀𝑀: number of analyzed intervals.
Theorem-1: The higher the load on the connection channel, the longer is the total time required

to capture packets.
Proof: The channel load factor is calculated by the equation (2):

𝐿𝐿𝑐𝑐 =
∑ 𝑃𝑃𝑡𝑡
∑ 𝐸𝐸𝑝𝑝

(2)

Where 𝑃𝑃𝑡𝑡: capture time of the packet; 𝐸𝐸𝑝𝑝: end time of processing of the 𝑖𝑖-th packet.
The number of packets and their size (in bytes) and the time of traffic measurement are known.

Then, the total capture time of the packet is equal to:

∑ 𝑃𝑃𝑡𝑡 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉 (3)

Where 𝑃𝑃𝑡𝑡: capture time of the packet; 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets
captured; 𝑉𝑉: packet capture rate.

The total processing time of the 𝑖𝑖-th packet is equivalent to the time of traffic measurement and
is determined by the equation (4):

∑ 𝐸𝐸𝑝𝑝 = 𝜑𝜑 (4)

Where 𝜑𝜑: the time of traffic measurement.
Based on the previous equations, the channel load factor is equal to:

 (4)

Where

𝐿𝐿𝑐𝑐 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉𝑉𝑉 (5)

Where 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets captured; 𝑉𝑉: packet capture rate;
𝑉𝑉: the time of traffic measurement.

Thus, the higher the channel load factor, the longer the packet capture time.
Hypothesis-1: The higher the packet intensity detected during network monitoring, the shorter

is the packet capture time.
Proof: The packet capture time can be determined by the equation (6):
𝑇𝑇𝑐𝑐 = 𝐼𝐼𝑝𝑝

1−𝑀𝑀𝑎𝑎×𝐼𝐼𝑝𝑝
(6)

Where 𝐼𝐼𝑝𝑝: packet intensity (packets/sec); 𝑀𝑀𝑎𝑎: average network monitoring time.
Let the packet capture time be expressed in terms of traffic intensity 𝑇𝑇𝐼𝐼 and packet length 𝐿𝐿𝑃𝑃,

and channel throughput 𝑇𝑇ℎ:
𝐼𝐼𝑝𝑝 = 𝑇𝑇𝐼𝐼

𝐿𝐿𝑃𝑃
(7)

Where 𝑇𝑇𝐼𝐼: traffic intensity; 𝐿𝐿𝑃𝑃: packet length.
The average network monitoring time is determined by the equation (8):

𝑀𝑀𝑎𝑎 = 𝐿𝐿𝑃𝑃
𝑇𝑇𝐶𝐶

(8)

Where 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇ℎ: the channel throughput; 𝑀𝑀𝑎𝑎: the average network monitoring
time.

Then, the equations (7) and (8) are substituted in the equation (6):

𝑇𝑇ℎ = 𝑇𝑇𝐼𝐼 + 𝐿𝐿𝑃𝑃
𝑇𝑇𝑐𝑐

(9)

Where 𝑇𝑇ℎ: the channel throughput; 𝑇𝑇𝐼𝐼: the traffic intensity; 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇𝑐𝑐: the packet
capture time.

Based on the above equations, corollary-1 is derived.
Corollary-1: To reduce packet capture time, the bandwidth of the channel must be high.

B. Client de-authorization process
After finding the network interfaces and selecting an access point for hacking, a handshake

should be conducted. To receive a handshake, the user must be active on the network. If there is no
activity, the activity is created by deactivating the client. During the client deactivation process, the
access point (fake) sends requests to the client until the client reconnects to the network. Thus, if
deactivation is successful, the hacker receives a handshake. Client de-authorization and handshake
recording process are given in Table 2.

Table 2 - Client de-authorization and handshake recording process

Algorithm-2: Client de-authorization and handshake recording process

 the time of traffic measurement.
Based on the previous equations, the channel load factor is equal to:

𝐿𝐿𝑐𝑐 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉𝑉𝑉 (5)

Where 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets captured; 𝑉𝑉: packet capture rate;
𝑉𝑉: the time of traffic measurement.

Thus, the higher the channel load factor, the longer the packet capture time.
Hypothesis-1: The higher the packet intensity detected during network monitoring, the shorter

is the packet capture time.
Proof: The packet capture time can be determined by the equation (6):
𝑇𝑇𝑐𝑐 = 𝐼𝐼𝑝𝑝

1−𝑀𝑀𝑎𝑎×𝐼𝐼𝑝𝑝
(6)

Where 𝐼𝐼𝑝𝑝: packet intensity (packets/sec); 𝑀𝑀𝑎𝑎: average network monitoring time.
Let the packet capture time be expressed in terms of traffic intensity 𝑇𝑇𝐼𝐼 and packet length 𝐿𝐿𝑃𝑃,

and channel throughput 𝑇𝑇ℎ:
𝐼𝐼𝑝𝑝 = 𝑇𝑇𝐼𝐼

𝐿𝐿𝑃𝑃
(7)

Where 𝑇𝑇𝐼𝐼: traffic intensity; 𝐿𝐿𝑃𝑃: packet length.
The average network monitoring time is determined by the equation (8):

𝑀𝑀𝑎𝑎 = 𝐿𝐿𝑃𝑃
𝑇𝑇𝐶𝐶

(8)

Where 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇ℎ: the channel throughput; 𝑀𝑀𝑎𝑎: the average network monitoring
time.

Then, the equations (7) and (8) are substituted in the equation (6):

𝑇𝑇ℎ = 𝑇𝑇𝐼𝐼 + 𝐿𝐿𝑃𝑃
𝑇𝑇𝑐𝑐

(9)

Where 𝑇𝑇ℎ: the channel throughput; 𝑇𝑇𝐼𝐼: the traffic intensity; 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇𝑐𝑐: the packet
capture time.

Based on the above equations, corollary-1 is derived.
Corollary-1: To reduce packet capture time, the bandwidth of the channel must be high.

B. Client de-authorization process
After finding the network interfaces and selecting an access point for hacking, a handshake

should be conducted. To receive a handshake, the user must be active on the network. If there is no
activity, the activity is created by deactivating the client. During the client deactivation process, the
access point (fake) sends requests to the client until the client reconnects to the network. Thus, if
deactivation is successful, the hacker receives a handshake. Client de-authorization and handshake
recording process are given in Table 2.

Table 2 - Client de-authorization and handshake recording process

Algorithm-2: Client de-authorization and handshake recording process

 (5)

Where B: number of bytes transmitted; N: number of packets captured; V: packet capture rate;

𝐿𝐿𝑐𝑐 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉𝑉𝑉 (5)

Where 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets captured; 𝑉𝑉: packet capture rate;
𝑉𝑉: the time of traffic measurement.

Thus, the higher the channel load factor, the longer the packet capture time.
Hypothesis-1: The higher the packet intensity detected during network monitoring, the shorter

is the packet capture time.
Proof: The packet capture time can be determined by the equation (6):
𝑇𝑇𝑐𝑐 = 𝐼𝐼𝑝𝑝

1−𝑀𝑀𝑎𝑎×𝐼𝐼𝑝𝑝
(6)

Where 𝐼𝐼𝑝𝑝: packet intensity (packets/sec); 𝑀𝑀𝑎𝑎: average network monitoring time.
Let the packet capture time be expressed in terms of traffic intensity 𝑇𝑇𝐼𝐼 and packet length 𝐿𝐿𝑃𝑃,

and channel throughput 𝑇𝑇ℎ:
𝐼𝐼𝑝𝑝 = 𝑇𝑇𝐼𝐼

𝐿𝐿𝑃𝑃
(7)

Where 𝑇𝑇𝐼𝐼: traffic intensity; 𝐿𝐿𝑃𝑃: packet length.
The average network monitoring time is determined by the equation (8):

𝑀𝑀𝑎𝑎 = 𝐿𝐿𝑃𝑃
𝑇𝑇𝐶𝐶

(8)

Where 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇ℎ: the channel throughput; 𝑀𝑀𝑎𝑎: the average network monitoring
time.

Then, the equations (7) and (8) are substituted in the equation (6):

𝑇𝑇ℎ = 𝑇𝑇𝐼𝐼 + 𝐿𝐿𝑃𝑃
𝑇𝑇𝑐𝑐

(9)

Where 𝑇𝑇ℎ: the channel throughput; 𝑇𝑇𝐼𝐼: the traffic intensity; 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇𝑐𝑐: the packet
capture time.

Based on the above equations, corollary-1 is derived.
Corollary-1: To reduce packet capture time, the bandwidth of the channel must be high.

B. Client de-authorization process
After finding the network interfaces and selecting an access point for hacking, a handshake

should be conducted. To receive a handshake, the user must be active on the network. If there is no
activity, the activity is created by deactivating the client. During the client deactivation process, the
access point (fake) sends requests to the client until the client reconnects to the network. Thus, if
deactivation is successful, the hacker receives a handshake. Client de-authorization and handshake
recording process are given in Table 2.

Table 2 - Client de-authorization and handshake recording process

Algorithm-2: Client de-authorization and handshake recording process

 the time
of traffic measurement.

Thus, the higher the channel load factor, the longer the packet capture time.
Hypothesis-1: The higher the packet intensity detected during network monitoring, the shorter is the

packet capture time.
Proof: The packet capture time can be determined by the equation (6):

𝐿𝐿𝑐𝑐 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉𝑉𝑉 (5)

Where 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets captured; 𝑉𝑉: packet capture rate;
𝑉𝑉: the time of traffic measurement.

Thus, the higher the channel load factor, the longer the packet capture time.
Hypothesis-1: The higher the packet intensity detected during network monitoring, the shorter

is the packet capture time.
Proof: The packet capture time can be determined by the equation (6):
𝑇𝑇𝑐𝑐 = 𝐼𝐼𝑝𝑝

1−𝑀𝑀𝑎𝑎×𝐼𝐼𝑝𝑝
 (6)

Where 𝐼𝐼𝑝𝑝: packet intensity (packets/sec); 𝑀𝑀𝑎𝑎: average network monitoring time.
Let the packet capture time be expressed in terms of traffic intensity 𝑇𝑇𝐼𝐼 and packet length 𝐿𝐿𝑃𝑃,

and channel throughput 𝑇𝑇ℎ:
𝐼𝐼𝑝𝑝 = 𝑇𝑇𝐼𝐼

𝐿𝐿𝑃𝑃
(7)

Where 𝑇𝑇𝐼𝐼: traffic intensity; 𝐿𝐿𝑃𝑃: packet length.
The average network monitoring time is determined by the equation (8):

𝑀𝑀𝑎𝑎 = 𝐿𝐿𝑃𝑃
𝑇𝑇𝐶𝐶

(8)

Where 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇ℎ: the channel throughput; 𝑀𝑀𝑎𝑎: the average network monitoring
time.

Then, the equations (7) and (8) are substituted in the equation (6):

𝑇𝑇ℎ = 𝑇𝑇𝐼𝐼 + 𝐿𝐿𝑃𝑃
𝑇𝑇𝑐𝑐

(9)

Where 𝑇𝑇ℎ: the channel throughput; 𝑇𝑇𝐼𝐼: the traffic intensity; 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇𝑐𝑐: the packet
capture time.

Based on the above equations, corollary-1 is derived.
Corollary-1: To reduce packet capture time, the bandwidth of the channel must be high.

B. Client de-authorization process
After finding the network interfaces and selecting an access point for hacking, a handshake

should be conducted. To receive a handshake, the user must be active on the network. If there is no
activity, the activity is created by deactivating the client. During the client deactivation process, the
access point (fake) sends requests to the client until the client reconnects to the network. Thus, if
deactivation is successful, the hacker receives a handshake. Client de-authorization and handshake
recording process are given in Table 2.

Table 2 - Client de-authorization and handshake recording process

Algorithm-2: Client de-authorization and handshake recording process

 (6)

Where Ip: packet intensity (packets/sec); Ma: average network monitoring time.
Let the packet capture time be expressed in terms of traffic intensity TI and packet length Lp, and channel

throughput Th:

𝐿𝐿𝑐𝑐 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉𝑉𝑉 (5)

Where 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets captured; 𝑉𝑉: packet capture rate;
𝑉𝑉: the time of traffic measurement.

Thus, the higher the channel load factor, the longer the packet capture time.
Hypothesis-1: The higher the packet intensity detected during network monitoring, the shorter

is the packet capture time.
Proof: The packet capture time can be determined by the equation (6):
𝑇𝑇𝑐𝑐 = 𝐼𝐼𝑝𝑝

1−𝑀𝑀𝑎𝑎×𝐼𝐼𝑝𝑝
(6)

Where 𝐼𝐼𝑝𝑝: packet intensity (packets/sec); 𝑀𝑀𝑎𝑎: average network monitoring time.
Let the packet capture time be expressed in terms of traffic intensity 𝑇𝑇𝐼𝐼 and packet length 𝐿𝐿𝑃𝑃,

and channel throughput 𝑇𝑇ℎ:
𝐼𝐼𝑝𝑝 = 𝑇𝑇𝐼𝐼

𝐿𝐿𝑃𝑃
 (7)

Where 𝑇𝑇𝐼𝐼: traffic intensity; 𝐿𝐿𝑃𝑃: packet length.
The average network monitoring time is determined by the equation (8):

𝑀𝑀𝑎𝑎 = 𝐿𝐿𝑃𝑃
𝑇𝑇𝐶𝐶

(8)

Where 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇ℎ: the channel throughput; 𝑀𝑀𝑎𝑎: the average network monitoring
time.

Then, the equations (7) and (8) are substituted in the equation (6):

𝑇𝑇ℎ = 𝑇𝑇𝐼𝐼 + 𝐿𝐿𝑃𝑃
𝑇𝑇𝑐𝑐

(9)

Where 𝑇𝑇ℎ: the channel throughput; 𝑇𝑇𝐼𝐼: the traffic intensity; 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇𝑐𝑐: the packet
capture time.

Based on the above equations, corollary-1 is derived.
Corollary-1: To reduce packet capture time, the bandwidth of the channel must be high.

B. Client de-authorization process
After finding the network interfaces and selecting an access point for hacking, a handshake

should be conducted. To receive a handshake, the user must be active on the network. If there is no
activity, the activity is created by deactivating the client. During the client deactivation process, the
access point (fake) sends requests to the client until the client reconnects to the network. Thus, if
deactivation is successful, the hacker receives a handshake. Client de-authorization and handshake
recording process are given in Table 2.

Table 2 - Client de-authorization and handshake recording process

Algorithm-2: Client de-authorization and handshake recording process

 (7)

Where TI: traffic intensity; Lp: packet length.
The average network monitoring time is determined by the equation (8):

𝐿𝐿𝑐𝑐 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉𝑉𝑉 (5)

Where 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets captured; 𝑉𝑉: packet capture rate;
𝑉𝑉: the time of traffic measurement.

Thus, the higher the channel load factor, the longer the packet capture time.
Hypothesis-1: The higher the packet intensity detected during network monitoring, the shorter

is the packet capture time.
Proof: The packet capture time can be determined by the equation (6):
𝑇𝑇𝑐𝑐 = 𝐼𝐼𝑝𝑝

1−𝑀𝑀𝑎𝑎×𝐼𝐼𝑝𝑝
(6)

Where 𝐼𝐼𝑝𝑝: packet intensity (packets/sec); 𝑀𝑀𝑎𝑎: average network monitoring time.
Let the packet capture time be expressed in terms of traffic intensity 𝑇𝑇𝐼𝐼 and packet length 𝐿𝐿𝑃𝑃,

and channel throughput 𝑇𝑇ℎ:
𝐼𝐼𝑝𝑝 = 𝑇𝑇𝐼𝐼

𝐿𝐿𝑃𝑃
(7)

Where 𝑇𝑇𝐼𝐼: traffic intensity; 𝐿𝐿𝑃𝑃: packet length.
The average network monitoring time is determined by the equation (8):

𝑀𝑀𝑎𝑎 = 𝐿𝐿𝑃𝑃
𝑇𝑇𝐶𝐶

 (8)

Where 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇ℎ: the channel throughput; 𝑀𝑀𝑎𝑎: the average network monitoring
time.

Then, the equations (7) and (8) are substituted in the equation (6):

𝑇𝑇ℎ = 𝑇𝑇𝐼𝐼 + 𝐿𝐿𝑃𝑃
𝑇𝑇𝑐𝑐

(9)

Where 𝑇𝑇ℎ: the channel throughput; 𝑇𝑇𝐼𝐼: the traffic intensity; 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇𝑐𝑐: the packet
capture time.

Based on the above equations, corollary-1 is derived.
Corollary-1: To reduce packet capture time, the bandwidth of the channel must be high.

B. Client de-authorization process
After finding the network interfaces and selecting an access point for hacking, a handshake

should be conducted. To receive a handshake, the user must be active on the network. If there is no
activity, the activity is created by deactivating the client. During the client deactivation process, the
access point (fake) sends requests to the client until the client reconnects to the network. Thus, if
deactivation is successful, the hacker receives a handshake. Client de-authorization and handshake
recording process are given in Table 2.

Table 2 - Client de-authorization and handshake recording process

Algorithm-2: Client de-authorization and handshake recording process

 (8)

Where Lp: the packet length; Th: the channel throughput; Ma: the average network monitoring time.
Then, the equations (7) and (8) are substituted in the equation (6):

𝐿𝐿𝑐𝑐 = (𝐵𝐵 + 𝑁𝑁) × 8
𝑉𝑉𝑉𝑉 (5)

Where 𝐵𝐵: number of bytes transmitted; 𝑁𝑁: number of packets captured; 𝑉𝑉: packet capture rate;
𝑉𝑉: the time of traffic measurement.

Thus, the higher the channel load factor, the longer the packet capture time.
Hypothesis-1: The higher the packet intensity detected during network monitoring, the shorter

is the packet capture time.
Proof: The packet capture time can be determined by the equation (6):
𝑇𝑇𝑐𝑐 = 𝐼𝐼𝑝𝑝

1−𝑀𝑀𝑎𝑎×𝐼𝐼𝑝𝑝
(6)

Where 𝐼𝐼𝑝𝑝: packet intensity (packets/sec); 𝑀𝑀𝑎𝑎: average network monitoring time.
Let the packet capture time be expressed in terms of traffic intensity 𝑇𝑇𝐼𝐼 and packet length 𝐿𝐿𝑃𝑃,

and channel throughput 𝑇𝑇ℎ:
𝐼𝐼𝑝𝑝 = 𝑇𝑇𝐼𝐼

𝐿𝐿𝑃𝑃
(7)

Where 𝑇𝑇𝐼𝐼: traffic intensity; 𝐿𝐿𝑃𝑃: packet length.
The average network monitoring time is determined by the equation (8):

𝑀𝑀𝑎𝑎 = 𝐿𝐿𝑃𝑃
𝑇𝑇𝐶𝐶

(8)

Where 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇ℎ: the channel throughput; 𝑀𝑀𝑎𝑎: the average network monitoring
time.

Then, the equations (7) and (8) are substituted in the equation (6):

𝑇𝑇ℎ = 𝑇𝑇𝐼𝐼 + 𝐿𝐿𝑃𝑃
𝑇𝑇𝑐𝑐

 (9)

Where 𝑇𝑇ℎ: the channel throughput; 𝑇𝑇𝐼𝐼: the traffic intensity; 𝐿𝐿𝑃𝑃: the packet length; 𝑇𝑇𝑐𝑐: the packet
capture time.

Based on the above equations, corollary-1 is derived.
Corollary-1: To reduce packet capture time, the bandwidth of the channel must be high.

B. Client de-authorization process
After finding the network interfaces and selecting an access point for hacking, a handshake

should be conducted. To receive a handshake, the user must be active on the network. If there is no
activity, the activity is created by deactivating the client. During the client deactivation process, the
access point (fake) sends requests to the client until the client reconnects to the network. Thus, if
deactivation is successful, the hacker receives a handshake. Client de-authorization and handshake
recording process are given in Table 2.

Table 2 - Client de-authorization and handshake recording process

Algorithm-2: Client de-authorization and handshake recording process

 (9)

Where Th: the channel throughput; TI: the traffic intensity; Lp: the packet length; Tc: the packet capture time.
Based on the above equations, corollary-1 is derived.
Corollary-1: To reduce packet capture time, the bandwidth of the channel must be high.

B. Client de-authorization process
After finding the network interfaces and selecting an access point for hacking, a handshake should be

conducted. To receive a handshake, the user must be active on the network. If there is no activity, the activity is
created by deactivating the client. During the client deactivation process, the access point (fake) sends requests
to the client until the client reconnects to the network. Thus, if deactivation is successful, the hacker receives a
handshake. Client de-authorization and handshake recording process are given in Table 2.

International Journal of Information and Communication Technologies, №8 (2), December, 2021
24

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

Table 2 - Client de-authorization and handshake recording process
Algorithm-2: Client de-authorization and handshake recording process
1. Initialization: {Apc: client's physical address; Apa: physical address of the access point; H: handshake;

I: interface; C: client; Ap access point; S: client's SSID; P: password; Rs: reсconnect, Pcf: packets-captured file}
2. Input: { Apc , Apa , I }
3. Output: {H}
4. Set Apc, Apa, I
5. Ap requests

1. Initialization: {𝐴𝐴𝑝𝑝𝑝𝑝: client's physical address; 𝐴𝐴𝑝𝑝𝑝𝑝: physical address of the
access point; 𝐻𝐻: handshake; 𝐼𝐼: interface; 𝐶𝐶: client; 𝐴𝐴𝑝𝑝: access point; 𝑆𝑆: client's SSID; 𝑃𝑃:
password; 𝑅𝑅𝑠𝑠: reсconnect, 𝑃𝑃𝑝𝑝𝑐𝑐: packets-captured file}

2. Input: {𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼}
3. Output: {𝐻𝐻}
4. Set 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼
5. 𝐴𝐴𝑝𝑝 requests 𝐶𝐶 → 𝑅𝑅𝑠𝑠
6. While 𝐴𝐴𝑝𝑝 = 𝑅𝑅𝑠𝑠
7. Do 𝐴𝐴𝑝𝑝 ← 𝐻𝐻 (𝑃𝑃, 𝑆𝑆)
8. Record 𝐻𝐻 𝑡𝑡𝑡𝑡 𝑃𝑃𝑝𝑝𝑐𝑐
9. End while

Algorithm-2 explains the client de-authorization and handshake recording processes. In step 1,
the variables are initialized for the process of client de-authorization and handshake recording. Steps
2-3 give the input and output processes, respectively. Step 4 uses the network components (e.g.,
client’s physical address, physical address of the access point, interface) for implementing requests.
In step 5 requests are sent from the access point to the client to reconnect to the network. Steps 6-7
explain passing the handshake, which includes the password and client ID number to the access point.
This process continues while the client is reconnecting to the network. In step 8 the received
handshake is written into the captured packets that were received during network monitoring in the
previous algorithm for further use in the Wi-Fi hacking process.

The time of de-authorization is characterized by the following properties:
▪ the total time of sending requests to the user;
▪ the total intensity of answers received by the hacker;
▪ processing of responses received from the user and establishing a handshake.
Definition-2: The total intensity of responses received by the hacker 𝛽𝛽𝑇𝑇 is the sum of the

intensity of the flow of requests sent to the user 𝛽𝛽𝐻𝐻 = (1 − 𝐶𝐶) × 𝛽𝛽 and the intensity of processed
responses sent by the user 𝛽𝛽𝑈𝑈 = (1 − 𝐶𝐶) × 𝛽𝛽 and is calculated by the equation (10):

𝛽𝛽𝑇𝑇 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (10)

Where 𝛽𝛽: the intensity of the elementary stream requests; 𝐶𝐶: probability of self-classification
of a new request stream by a second access point.

Theorem-2: The intensity of sending requests by the hacker affects the performance of
processing requests by the user and the average delay in sending requests.

Proof: The performance of processing requests by the user (𝑃𝑃𝑅𝑅) is determined by the equation
(11):

𝑃𝑃𝑅𝑅 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽
𝜔𝜔 (11)

Where 𝑃𝑃𝑅𝑅: the performance of processing requests by the user 𝜔𝜔: the intensity of the query
processing; 𝛽𝛽: intensity of sending requests; 𝐶𝐶: probability of self-classification of a new request
stream by a second access point.

The probability that the communication channel for sending the request is free (𝑃𝑃𝐶𝐶) can be
obtained by the equation (12):

 C→Rs
6. While Ap= Rs
7. Do Ap

1. Initialization: {𝐴𝐴𝑝𝑝𝑝𝑝: client's physical address; 𝐴𝐴𝑝𝑝𝑝𝑝: physical address of the
access point; 𝐻𝐻: handshake; 𝐼𝐼: interface; 𝐶𝐶: client; 𝐴𝐴𝑝𝑝: access point; 𝑆𝑆: client's SSID; 𝑃𝑃:
password; 𝑅𝑅𝑠𝑠: reсconnect, 𝑃𝑃𝑝𝑝𝑐𝑐: packets-captured file}

2. Input: {𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼}
3. Output: {𝐻𝐻}
4. Set 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼
5. 𝐴𝐴𝑝𝑝 requests 𝐶𝐶 → 𝑅𝑅𝑠𝑠
6. While 𝐴𝐴𝑝𝑝 = 𝑅𝑅𝑠𝑠
7. Do 𝐴𝐴𝑝𝑝 ← 𝐻𝐻 (𝑃𝑃, 𝑆𝑆)
8. Record 𝐻𝐻 𝑡𝑡𝑡𝑡 𝑃𝑃𝑝𝑝𝑐𝑐
9. End while

Algorithm-2 explains the client de-authorization and handshake recording processes. In step 1,
the variables are initialized for the process of client de-authorization and handshake recording. Steps
2-3 give the input and output processes, respectively. Step 4 uses the network components (e.g.,
client’s physical address, physical address of the access point, interface) for implementing requests.
In step 5 requests are sent from the access point to the client to reconnect to the network. Steps 6-7
explain passing the handshake, which includes the password and client ID number to the access point.
This process continues while the client is reconnecting to the network. In step 8 the received
handshake is written into the captured packets that were received during network monitoring in the
previous algorithm for further use in the Wi-Fi hacking process.

The time of de-authorization is characterized by the following properties:
▪ the total time of sending requests to the user;
▪ the total intensity of answers received by the hacker;
▪ processing of responses received from the user and establishing a handshake.
Definition-2: The total intensity of responses received by the hacker 𝛽𝛽𝑇𝑇 is the sum of the

intensity of the flow of requests sent to the user 𝛽𝛽𝐻𝐻 = (1 − 𝐶𝐶) × 𝛽𝛽 and the intensity of processed
responses sent by the user 𝛽𝛽𝑈𝑈 = (1 − 𝐶𝐶) × 𝛽𝛽 and is calculated by the equation (10):

𝛽𝛽𝑇𝑇 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (10)

Where 𝛽𝛽: the intensity of the elementary stream requests; 𝐶𝐶: probability of self-classification
of a new request stream by a second access point.

Theorem-2: The intensity of sending requests by the hacker affects the performance of
processing requests by the user and the average delay in sending requests.

Proof: The performance of processing requests by the user (𝑃𝑃𝑅𝑅) is determined by the equation
(11):

𝑃𝑃𝑅𝑅 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽
𝜔𝜔 (11)

Where 𝑃𝑃𝑅𝑅: the performance of processing requests by the user 𝜔𝜔: the intensity of the query
processing; 𝛽𝛽: intensity of sending requests; 𝐶𝐶: probability of self-classification of a new request
stream by a second access point.

The probability that the communication channel for sending the request is free (𝑃𝑃𝐶𝐶) can be
obtained by the equation (12):

 H

1. Initialization: {𝐴𝐴𝑝𝑝𝑝𝑝: client's physical address; 𝐴𝐴𝑝𝑝𝑝𝑝: physical address of the
access point; 𝐻𝐻: handshake; 𝐼𝐼: interface; 𝐶𝐶: client; 𝐴𝐴𝑝𝑝: access point; 𝑆𝑆: client's SSID; 𝑃𝑃:
password; 𝑅𝑅𝑠𝑠: reсconnect, 𝑃𝑃𝑝𝑝𝑐𝑐: packets-captured file}

2. Input: {𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼}
3. Output: {𝐻𝐻}
4. Set 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼
5. 𝐴𝐴𝑝𝑝 requests 𝐶𝐶 → 𝑅𝑅𝑠𝑠
6. While 𝐴𝐴𝑝𝑝 = 𝑅𝑅𝑠𝑠
7. Do 𝐴𝐴𝑝𝑝 ← 𝐻𝐻 (𝑃𝑃, 𝑆𝑆)
8. Record 𝐻𝐻 𝑡𝑡𝑡𝑡 𝑃𝑃𝑝𝑝𝑐𝑐
9. End while

Algorithm-2 explains the client de-authorization and handshake recording processes. In step 1,
the variables are initialized for the process of client de-authorization and handshake recording. Steps
2-3 give the input and output processes, respectively. Step 4 uses the network components (e.g.,
client’s physical address, physical address of the access point, interface) for implementing requests.
In step 5 requests are sent from the access point to the client to reconnect to the network. Steps 6-7
explain passing the handshake, which includes the password and client ID number to the access point.
This process continues while the client is reconnecting to the network. In step 8 the received
handshake is written into the captured packets that were received during network monitoring in the
previous algorithm for further use in the Wi-Fi hacking process.

The time of de-authorization is characterized by the following properties:
▪ the total time of sending requests to the user;
▪ the total intensity of answers received by the hacker;
▪ processing of responses received from the user and establishing a handshake.
Definition-2: The total intensity of responses received by the hacker 𝛽𝛽𝑇𝑇 is the sum of the

intensity of the flow of requests sent to the user 𝛽𝛽𝐻𝐻 = (1 − 𝐶𝐶) × 𝛽𝛽 and the intensity of processed
responses sent by the user 𝛽𝛽𝑈𝑈 = (1 − 𝐶𝐶) × 𝛽𝛽 and is calculated by the equation (10):

𝛽𝛽𝑇𝑇 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (10)

Where 𝛽𝛽: the intensity of the elementary stream requests; 𝐶𝐶: probability of self-classification
of a new request stream by a second access point.

Theorem-2: The intensity of sending requests by the hacker affects the performance of
processing requests by the user and the average delay in sending requests.

Proof: The performance of processing requests by the user (𝑃𝑃𝑅𝑅) is determined by the equation
(11):

𝑃𝑃𝑅𝑅 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽
𝜔𝜔 (11)

Where 𝑃𝑃𝑅𝑅: the performance of processing requests by the user 𝜔𝜔: the intensity of the query
processing; 𝛽𝛽: intensity of sending requests; 𝐶𝐶: probability of self-classification of a new request
stream by a second access point.

The probability that the communication channel for sending the request is free (𝑃𝑃𝐶𝐶) can be
obtained by the equation (12):

8. Record H to Pcf
9. End while

Algorithm-2 explains the client de-authorization and handshake recording processes. In step 1, the variables
are initialized for the process of client de-authorization and handshake recording. Steps 2-3 give the input and
output processes, respectively. Step 4 uses the network components (e.g., client’s physical address, physical
address of the access point, interface) for implementing requests. In step 5 requests are sent from the access
point to the client to reconnect to the network. Steps 6-7 explain passing the handshake, which includes the
password and client ID number to the access point. This process continues while the client is reconnecting to
the network. In step 8 the received handshake is written into the captured packets that were received during
network monitoring in the previous algorithm for further use in the Wi-Fi hacking process.

The time of de-authorization is characterized by the following properties:
	the total time of sending requests to the user;
	the total intensity of answers received by the hacker;
	processing of responses received from the user and establishing a handshake.
Definition-2: The total intensity of responses received by the hacker βT is the sum of the intensity of the

flow of requests sent to the user

1. Initialization: {𝐴𝐴𝑝𝑝𝑝𝑝: client's physical address; 𝐴𝐴𝑝𝑝𝑝𝑝: physical address of the
access point; 𝐻𝐻: handshake; 𝐼𝐼: interface; 𝐶𝐶: client; 𝐴𝐴𝑝𝑝: access point; 𝑆𝑆: client's SSID; 𝑃𝑃:
password; 𝑅𝑅𝑠𝑠: reсconnect, 𝑃𝑃𝑝𝑝𝑐𝑐: packets-captured file}

2. Input: {𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼}
3. Output: {𝐻𝐻}
4. Set 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼
5. 𝐴𝐴𝑝𝑝 requests 𝐶𝐶 → 𝑅𝑅𝑠𝑠
6. While 𝐴𝐴𝑝𝑝 = 𝑅𝑅𝑠𝑠
7. Do 𝐴𝐴𝑝𝑝 ← 𝐻𝐻 (𝑃𝑃, 𝑆𝑆)
8. Record 𝐻𝐻 𝑡𝑡𝑡𝑡 𝑃𝑃𝑝𝑝𝑐𝑐
9. End while

Algorithm-2 explains the client de-authorization and handshake recording processes. In step 1,
the variables are initialized for the process of client de-authorization and handshake recording. Steps
2-3 give the input and output processes, respectively. Step 4 uses the network components (e.g.,
client’s physical address, physical address of the access point, interface) for implementing requests.
In step 5 requests are sent from the access point to the client to reconnect to the network. Steps 6-7
explain passing the handshake, which includes the password and client ID number to the access point.
This process continues while the client is reconnecting to the network. In step 8 the received
handshake is written into the captured packets that were received during network monitoring in the
previous algorithm for further use in the Wi-Fi hacking process.

The time of de-authorization is characterized by the following properties:
▪ the total time of sending requests to the user;
▪ the total intensity of answers received by the hacker;
▪ processing of responses received from the user and establishing a handshake.
Definition-2: The total intensity of responses received by the hacker 𝛽𝛽𝑇𝑇 is the sum of the

intensity of the flow of requests sent to the user 𝛽𝛽𝐻𝐻 = (1 − 𝐶𝐶) × 𝛽𝛽 and the intensity of processed
responses sent by the user 𝛽𝛽𝑈𝑈 = (1 − 𝐶𝐶) × 𝛽𝛽 and is calculated by the equation (10):

𝛽𝛽𝑇𝑇 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (10)

Where 𝛽𝛽: the intensity of the elementary stream requests; 𝐶𝐶: probability of self-classification
of a new request stream by a second access point.

Theorem-2: The intensity of sending requests by the hacker affects the performance of
processing requests by the user and the average delay in sending requests.

Proof: The performance of processing requests by the user (𝑃𝑃𝑅𝑅) is determined by the equation
(11):

𝑃𝑃𝑅𝑅 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽
𝜔𝜔 (11)

Where 𝑃𝑃𝑅𝑅: the performance of processing requests by the user 𝜔𝜔: the intensity of the query
processing; 𝛽𝛽: intensity of sending requests; 𝐶𝐶: probability of self-classification of a new request
stream by a second access point.

The probability that the communication channel for sending the request is free (𝑃𝑃𝐶𝐶) can be
obtained by the equation (12):

 and the intensity of processed responses sent by the user

1. Initialization: {𝐴𝐴𝑝𝑝𝑝𝑝: client's physical address; 𝐴𝐴𝑝𝑝𝑝𝑝: physical address of the
access point; 𝐻𝐻: handshake; 𝐼𝐼: interface; 𝐶𝐶: client; 𝐴𝐴𝑝𝑝: access point; 𝑆𝑆: client's SSID; 𝑃𝑃:
password; 𝑅𝑅𝑠𝑠: reсconnect, 𝑃𝑃𝑝𝑝𝑐𝑐: packets-captured file}

2. Input: {𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼}
3. Output: {𝐻𝐻}
4. Set 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼
5. 𝐴𝐴𝑝𝑝 requests 𝐶𝐶 → 𝑅𝑅𝑠𝑠
6. While 𝐴𝐴𝑝𝑝 = 𝑅𝑅𝑠𝑠
7. Do 𝐴𝐴𝑝𝑝 ← 𝐻𝐻 (𝑃𝑃, 𝑆𝑆)
8. Record 𝐻𝐻 𝑡𝑡𝑡𝑡 𝑃𝑃𝑝𝑝𝑐𝑐
9. End while

Algorithm-2 explains the client de-authorization and handshake recording processes. In step 1,
the variables are initialized for the process of client de-authorization and handshake recording. Steps
2-3 give the input and output processes, respectively. Step 4 uses the network components (e.g.,
client’s physical address, physical address of the access point, interface) for implementing requests.
In step 5 requests are sent from the access point to the client to reconnect to the network. Steps 6-7
explain passing the handshake, which includes the password and client ID number to the access point.
This process continues while the client is reconnecting to the network. In step 8 the received
handshake is written into the captured packets that were received during network monitoring in the
previous algorithm for further use in the Wi-Fi hacking process.

The time of de-authorization is characterized by the following properties:
▪ the total time of sending requests to the user;
▪ the total intensity of answers received by the hacker;
▪ processing of responses received from the user and establishing a handshake.
Definition-2: The total intensity of responses received by the hacker 𝛽𝛽𝑇𝑇 is the sum of the

intensity of the flow of requests sent to the user 𝛽𝛽𝐻𝐻 = (1 − 𝐶𝐶) × 𝛽𝛽 and the intensity of processed
responses sent by the user 𝛽𝛽𝑈𝑈 = (1 − 𝐶𝐶) × 𝛽𝛽 and is calculated by the equation (10):

𝛽𝛽𝑇𝑇 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (10)

Where 𝛽𝛽: the intensity of the elementary stream requests; 𝐶𝐶: probability of self-classification
of a new request stream by a second access point.

Theorem-2: The intensity of sending requests by the hacker affects the performance of
processing requests by the user and the average delay in sending requests.

Proof: The performance of processing requests by the user (𝑃𝑃𝑅𝑅) is determined by the equation
(11):

𝑃𝑃𝑅𝑅 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽
𝜔𝜔 (11)

Where 𝑃𝑃𝑅𝑅: the performance of processing requests by the user 𝜔𝜔: the intensity of the query
processing; 𝛽𝛽: intensity of sending requests; 𝐶𝐶: probability of self-classification of a new request
stream by a second access point.

The probability that the communication channel for sending the request is free (𝑃𝑃𝐶𝐶) can be
obtained by the equation (12):

 and is calculated by the equation (10):

1. Initialization: {𝐴𝐴𝑝𝑝𝑝𝑝: client's physical address; 𝐴𝐴𝑝𝑝𝑝𝑝: physical address of the
access point; 𝐻𝐻: handshake; 𝐼𝐼: interface; 𝐶𝐶: client; 𝐴𝐴𝑝𝑝: access point; 𝑆𝑆: client's SSID; 𝑃𝑃:
password; 𝑅𝑅𝑠𝑠: reсconnect, 𝑃𝑃𝑝𝑝𝑐𝑐: packets-captured file}

2. Input: {𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼}
3. Output: {𝐻𝐻}
4. Set 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼
5. 𝐴𝐴𝑝𝑝 requests 𝐶𝐶 → 𝑅𝑅𝑠𝑠
6. While 𝐴𝐴𝑝𝑝 = 𝑅𝑅𝑠𝑠
7. Do 𝐴𝐴𝑝𝑝 ← 𝐻𝐻 (𝑃𝑃, 𝑆𝑆)
8. Record 𝐻𝐻 𝑡𝑡𝑡𝑡 𝑃𝑃𝑝𝑝𝑐𝑐
9. End while

Algorithm-2 explains the client de-authorization and handshake recording processes. In step 1,
the variables are initialized for the process of client de-authorization and handshake recording. Steps
2-3 give the input and output processes, respectively. Step 4 uses the network components (e.g.,
client’s physical address, physical address of the access point, interface) for implementing requests.
In step 5 requests are sent from the access point to the client to reconnect to the network. Steps 6-7
explain passing the handshake, which includes the password and client ID number to the access point.
This process continues while the client is reconnecting to the network. In step 8 the received
handshake is written into the captured packets that were received during network monitoring in the
previous algorithm for further use in the Wi-Fi hacking process.

The time of de-authorization is characterized by the following properties:
▪ the total time of sending requests to the user;
▪ the total intensity of answers received by the hacker;
▪ processing of responses received from the user and establishing a handshake.
Definition-2: The total intensity of responses received by the hacker 𝛽𝛽𝑇𝑇 is the sum of the

intensity of the flow of requests sent to the user 𝛽𝛽𝐻𝐻 = (1 − 𝐶𝐶) × 𝛽𝛽 and the intensity of processed
responses sent by the user 𝛽𝛽𝑈𝑈 = (1 − 𝐶𝐶) × 𝛽𝛽 and is calculated by the equation (10):

𝛽𝛽𝑇𝑇 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (10)

Where 𝛽𝛽: the intensity of the elementary stream requests; 𝐶𝐶: probability of self-classification
of a new request stream by a second access point.

Theorem-2: The intensity of sending requests by the hacker affects the performance of
processing requests by the user and the average delay in sending requests.

Proof: The performance of processing requests by the user (𝑃𝑃𝑅𝑅) is determined by the equation
(11):

𝑃𝑃𝑅𝑅 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽
𝜔𝜔 (11)

Where 𝑃𝑃𝑅𝑅: the performance of processing requests by the user 𝜔𝜔: the intensity of the query
processing; 𝛽𝛽: intensity of sending requests; 𝐶𝐶: probability of self-classification of a new request
stream by a second access point.

The probability that the communication channel for sending the request is free (𝑃𝑃𝐶𝐶) can be
obtained by the equation (12):

 (10)
Where β: the intensity of the elementary stream requests; C: probability of self-classification of a new

request stream by a second access point.
Theorem-2: The intensity of sending requests by the hacker affects the performance of processing requests

by the user and the average delay in sending requests.
Proof: The performance of processing requests by the user (PR) is determined by the equation (11):

1. Initialization: {𝐴𝐴𝑝𝑝𝑝𝑝: client's physical address; 𝐴𝐴𝑝𝑝𝑝𝑝: physical address of the
access point; 𝐻𝐻: handshake; 𝐼𝐼: interface; 𝐶𝐶: client; 𝐴𝐴𝑝𝑝: access point; 𝑆𝑆: client's SSID; 𝑃𝑃:
password; 𝑅𝑅𝑠𝑠: reсconnect, 𝑃𝑃𝑝𝑝𝑐𝑐: packets-captured file}

2. Input: {𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼}
3. Output: {𝐻𝐻}
4. Set 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼
5. 𝐴𝐴𝑝𝑝 requests 𝐶𝐶 → 𝑅𝑅𝑠𝑠
6. While 𝐴𝐴𝑝𝑝 = 𝑅𝑅𝑠𝑠
7. Do 𝐴𝐴𝑝𝑝 ← 𝐻𝐻 (𝑃𝑃, 𝑆𝑆)
8. Record 𝐻𝐻 𝑡𝑡𝑡𝑡 𝑃𝑃𝑝𝑝𝑐𝑐
9. End while

Algorithm-2 explains the client de-authorization and handshake recording processes. In step 1,
the variables are initialized for the process of client de-authorization and handshake recording. Steps
2-3 give the input and output processes, respectively. Step 4 uses the network components (e.g.,
client’s physical address, physical address of the access point, interface) for implementing requests.
In step 5 requests are sent from the access point to the client to reconnect to the network. Steps 6-7
explain passing the handshake, which includes the password and client ID number to the access point.
This process continues while the client is reconnecting to the network. In step 8 the received
handshake is written into the captured packets that were received during network monitoring in the
previous algorithm for further use in the Wi-Fi hacking process.

The time of de-authorization is characterized by the following properties:
▪ the total time of sending requests to the user;
▪ the total intensity of answers received by the hacker;
▪ processing of responses received from the user and establishing a handshake.
Definition-2: The total intensity of responses received by the hacker 𝛽𝛽𝑇𝑇 is the sum of the

intensity of the flow of requests sent to the user 𝛽𝛽𝐻𝐻 = (1 − 𝐶𝐶) × 𝛽𝛽 and the intensity of processed
responses sent by the user 𝛽𝛽𝑈𝑈 = (1 − 𝐶𝐶) × 𝛽𝛽 and is calculated by the equation (10):

𝛽𝛽𝑇𝑇 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (10)

Where 𝛽𝛽: the intensity of the elementary stream requests; 𝐶𝐶: probability of self-classification
of a new request stream by a second access point.

Theorem-2: The intensity of sending requests by the hacker affects the performance of
processing requests by the user and the average delay in sending requests.

Proof: The performance of processing requests by the user (𝑃𝑃𝑅𝑅) is determined by the equation
(11):

𝑃𝑃𝑅𝑅 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽
𝜔𝜔 (11)

Where 𝑃𝑃𝑅𝑅: the performance of processing requests by the user 𝜔𝜔: the intensity of the query
processing; 𝛽𝛽: intensity of sending requests; 𝐶𝐶: probability of self-classification of a new request
stream by a second access point.

The probability that the communication channel for sending the request is free (𝑃𝑃𝐶𝐶) can be
obtained by the equation (12):

 (11)

Where PR the performance of processing requests by the user

1. Initialization: {𝐴𝐴𝑝𝑝𝑝𝑝: client's physical address; 𝐴𝐴𝑝𝑝𝑝𝑝: physical address of the
access point; 𝐻𝐻: handshake; 𝐼𝐼: interface; 𝐶𝐶: client; 𝐴𝐴𝑝𝑝: access point; 𝑆𝑆: client's SSID; 𝑃𝑃:
password; 𝑅𝑅𝑠𝑠: reсconnect, 𝑃𝑃𝑝𝑝𝑐𝑐: packets-captured file}

2. Input: {𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼}
3. Output: {𝐻𝐻}
4. Set 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐴𝐴𝑝𝑝𝑝𝑝, 𝐼𝐼
5. 𝐴𝐴𝑝𝑝 requests 𝐶𝐶 → 𝑅𝑅𝑠𝑠
6. While 𝐴𝐴𝑝𝑝 = 𝑅𝑅𝑠𝑠
7. Do 𝐴𝐴𝑝𝑝 ← 𝐻𝐻 (𝑃𝑃, 𝑆𝑆)
8. Record 𝐻𝐻 𝑡𝑡𝑡𝑡 𝑃𝑃𝑝𝑝𝑐𝑐
9. End while

Algorithm-2 explains the client de-authorization and handshake recording processes. In step 1,
the variables are initialized for the process of client de-authorization and handshake recording. Steps
2-3 give the input and output processes, respectively. Step 4 uses the network components (e.g.,
client’s physical address, physical address of the access point, interface) for implementing requests.
In step 5 requests are sent from the access point to the client to reconnect to the network. Steps 6-7
explain passing the handshake, which includes the password and client ID number to the access point.
This process continues while the client is reconnecting to the network. In step 8 the received
handshake is written into the captured packets that were received during network monitoring in the
previous algorithm for further use in the Wi-Fi hacking process.

The time of de-authorization is characterized by the following properties:
▪ the total time of sending requests to the user;
▪ the total intensity of answers received by the hacker;
▪ processing of responses received from the user and establishing a handshake.
Definition-2: The total intensity of responses received by the hacker 𝛽𝛽𝑇𝑇 is the sum of the

intensity of the flow of requests sent to the user 𝛽𝛽𝐻𝐻 = (1 − 𝐶𝐶) × 𝛽𝛽 and the intensity of processed
responses sent by the user 𝛽𝛽𝑈𝑈 = (1 − 𝐶𝐶) × 𝛽𝛽 and is calculated by the equation (10):

𝛽𝛽𝑇𝑇 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (10)

Where 𝛽𝛽: the intensity of the elementary stream requests; 𝐶𝐶: probability of self-classification
of a new request stream by a second access point.

Theorem-2: The intensity of sending requests by the hacker affects the performance of
processing requests by the user and the average delay in sending requests.

Proof: The performance of processing requests by the user (𝑃𝑃𝑅𝑅) is determined by the equation
(11):

𝑃𝑃𝑅𝑅 = 𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽
𝜔𝜔 (11)

Where 𝑃𝑃𝑅𝑅: the performance of processing requests by the user 𝜔𝜔: the intensity of the query
processing; 𝛽𝛽: intensity of sending requests; 𝐶𝐶: probability of self-classification of a new request
stream by a second access point.

The probability that the communication channel for sending the request is free (𝑃𝑃𝐶𝐶) can be
obtained by the equation (12):

 the intensity of the query processing; β:
intensity of sending requests; C: probability of self-classification of a new request stream by a second access
point.

The probability that the communication channel for sending the request is free (Pc) can be obtained by the
equation (12):

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

 (12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 (12)

Where m: the number of processors.
The average delay in sending requests (DA) can be obtained based on the number of requests sent (SR),

depending on the average number of requests in the queue (QA):

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

 , (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 (13)

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 (14)

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 (15)

International Journal of Information and Communication Technologies, №8 (2), December, 2021
25

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

Where m: the number of processors; Pc: the probability that the communication channel for sending the
request is free; PR: the performance of request processing by the user; β: the intensity of the elementary stream
requests; C: the probability of self-classification of a new request stream by a second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker to get a
handshake.

Proof: Each request has the same length and requires a transmission time (

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

). The time of transmission of
the message about the client's acceptance of the request is assumed to be equal to

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

. The time for sending a
request (

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

) is calculated using the equation (16):

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 (16)
Where

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

: the transmission time of the request; N: the number of requests;

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

: the average processing
time of the response received by the hacker;

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

: the average waiting time for a request in the queue until the
communication line is free;

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

: the time of transmission of the message about the client's acceptance of the
request.

Since the bandwidth of the communication channel and the average length of each request are known, the
average time for its transmission can be determined by the equation (17):

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

 (17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 (17)

Where Rv: a known volume of the request in bits; Ch: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated similarly

by the equation (18):

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

 (18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 (18)

Where RA: known volume of the request acceptance message; Ch: channel capacity bit/sec.
To calculate the average waiting time

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 and the average message processing time

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

, it is assumed that
the input stream of packets from the user forms a simple stream with an average intensity

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

, and the average
service time AS calculated by the equation: (19):

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19) (19)

The request received in the buffer will wait until the communication line is released, i.e. until the processing
of the message about the acceptance of the previous request is completed. Probabilities of finding a packet in a
buffer queue of infinite length is calculated by the equation (20):

The request received in the buffer will wait until the communication line is released, i.e. until
the processing of the message about the acceptance of the previous request is completed. Probabilities
of finding a packet in a buffer queue of infinite length is calculated by the equation (20):

𝑄𝑄(𝑁𝑁, 𝐿𝐿) =
𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 1
1 − 𝐿𝐿/𝑁𝑁

∑ 𝐿𝐿𝑘𝑘

𝑘𝑘!
𝑁𝑁−1
𝑘𝑘=0 + 𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 𝑁𝑁
𝑁𝑁 − 𝐿𝐿

 (20)

Where 𝐿𝐿 = 𝜇𝜇
𝛾𝛾 ∶ full input load.

The average number of requests can be found by the equation (21):

𝐴𝐴𝑁𝑁 = 𝐿𝐿
𝑁𝑁 − 𝐿𝐿 ∗ 𝑄𝑄(𝑁𝑁, 𝐿𝐿) (21)

Where 𝐴𝐴𝑁𝑁: the average number of requests; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load.

Based on the previous equations, the average waiting time for a request in the queue is
calculated by the equation (22):

𝜏𝜏𝑊𝑊 = 𝐴𝐴𝑁𝑁
𝜇𝜇 = 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (22)

Where 𝐴𝐴𝑁𝑁: average number of requests; 𝜇𝜇: average intensity.
The average processing time of a single request is determined by the equation (23):
𝜏𝜏𝐴𝐴 = 𝐿𝐿

𝜇𝜇 = 1
𝛾𝛾 (23)

Where 𝐿𝐿: full input load; 𝜇𝜇: average intensity.
Thus, if the parameters 𝜏𝜏𝑊𝑊 and 𝜏𝜏𝐴𝐴 are unchanged, the time of sending the request 𝜏𝜏𝑆𝑆 is

determined by the equation (24):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (24)

Where 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the
known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load, N: the number of requests.

Corollary-2: To reduce the volume of transmitted requests, it is necessary to transmit requests
of greater length to speed up the time of receiving the handshake. This corollary was based on the
analysis of equation (24).

Considering that all requests have equal length and average transmission time, the duration of
the communication channel occupation when transmitting one request after establishing a connection
between the hacker and the user is determined by the equation (25):

𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑀𝑀 (25)

Where 𝑅𝑅𝑀𝑀 = 𝜏𝜏𝑀𝑀 × 𝐶𝐶ℎ: the volume of transmitted requests.
Thus, the total time for sending requests is determined by the equation (26):

 (20)

Where

The request received in the buffer will wait until the communication line is released, i.e. until
the processing of the message about the acceptance of the previous request is completed. Probabilities
of finding a packet in a buffer queue of infinite length is calculated by the equation (20):

𝑄𝑄(𝑁𝑁, 𝐿𝐿) =
𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 1
1 − 𝐿𝐿/𝑁𝑁

∑ 𝐿𝐿𝑘𝑘

𝑘𝑘!
𝑁𝑁−1
𝑘𝑘=0 + 𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 𝑁𝑁
𝑁𝑁 − 𝐿𝐿

(20)

Where 𝐿𝐿 = 𝜇𝜇
𝛾𝛾 ∶ full input load.

The average number of requests can be found by the equation (21):

𝐴𝐴𝑁𝑁 = 𝐿𝐿
𝑁𝑁 − 𝐿𝐿 ∗ 𝑄𝑄(𝑁𝑁, 𝐿𝐿) (21)

Where 𝐴𝐴𝑁𝑁: the average number of requests; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load.

Based on the previous equations, the average waiting time for a request in the queue is
calculated by the equation (22):

𝜏𝜏𝑊𝑊 = 𝐴𝐴𝑁𝑁
𝜇𝜇 = 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (22)

Where 𝐴𝐴𝑁𝑁: average number of requests; 𝜇𝜇: average intensity.
The average processing time of a single request is determined by the equation (23):
𝜏𝜏𝐴𝐴 = 𝐿𝐿

𝜇𝜇 = 1
𝛾𝛾 (23)

Where 𝐿𝐿: full input load; 𝜇𝜇: average intensity.
Thus, if the parameters 𝜏𝜏𝑊𝑊 and 𝜏𝜏𝐴𝐴 are unchanged, the time of sending the request 𝜏𝜏𝑆𝑆 is

determined by the equation (24):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (24)

Where 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the
known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load, N: the number of requests.

Corollary-2: To reduce the volume of transmitted requests, it is necessary to transmit requests
of greater length to speed up the time of receiving the handshake. This corollary was based on the
analysis of equation (24).

Considering that all requests have equal length and average transmission time, the duration of
the communication channel occupation when transmitting one request after establishing a connection
between the hacker and the user is determined by the equation (25):

𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑀𝑀 (25)

Where 𝑅𝑅𝑀𝑀 = 𝜏𝜏𝑀𝑀 × 𝐶𝐶ℎ: the volume of transmitted requests.
Thus, the total time for sending requests is determined by the equation (26):

: full input load.
The average number of requests can be found by the equation (21):

The request received in the buffer will wait until the communication line is released, i.e. until
the processing of the message about the acceptance of the previous request is completed. Probabilities
of finding a packet in a buffer queue of infinite length is calculated by the equation (20):

𝑄𝑄(𝑁𝑁, 𝐿𝐿) =
𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 1
1 − 𝐿𝐿/𝑁𝑁

∑ 𝐿𝐿𝑘𝑘

𝑘𝑘!
𝑁𝑁−1
𝑘𝑘=0 + 𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 𝑁𝑁
𝑁𝑁 − 𝐿𝐿

(20)

Where 𝐿𝐿 = 𝜇𝜇
𝛾𝛾 ∶ full input load.

The average number of requests can be found by the equation (21):

𝐴𝐴𝑁𝑁 = 𝐿𝐿
𝑁𝑁 − 𝐿𝐿 ∗ 𝑄𝑄(𝑁𝑁, 𝐿𝐿) (21)

Where 𝐴𝐴𝑁𝑁: the average number of requests; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load.

Based on the previous equations, the average waiting time for a request in the queue is
calculated by the equation (22):

𝜏𝜏𝑊𝑊 = 𝐴𝐴𝑁𝑁
𝜇𝜇 = 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (22)

Where 𝐴𝐴𝑁𝑁: average number of requests; 𝜇𝜇: average intensity.
The average processing time of a single request is determined by the equation (23):
𝜏𝜏𝐴𝐴 = 𝐿𝐿

𝜇𝜇 = 1
𝛾𝛾 (23)

Where 𝐿𝐿: full input load; 𝜇𝜇: average intensity.
Thus, if the parameters 𝜏𝜏𝑊𝑊 and 𝜏𝜏𝐴𝐴 are unchanged, the time of sending the request 𝜏𝜏𝑆𝑆 is

determined by the equation (24):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (24)

Where 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the
known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load, N: the number of requests.

Corollary-2: To reduce the volume of transmitted requests, it is necessary to transmit requests
of greater length to speed up the time of receiving the handshake. This corollary was based on the
analysis of equation (24).

Considering that all requests have equal length and average transmission time, the duration of
the communication channel occupation when transmitting one request after establishing a connection
between the hacker and the user is determined by the equation (25):

𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑀𝑀 (25)

Where 𝑅𝑅𝑀𝑀 = 𝜏𝜏𝑀𝑀 × 𝐶𝐶ℎ: the volume of transmitted requests.
Thus, the total time for sending requests is determined by the equation (26):

 (21)
Where AN: the average number of requests; Q(N,L): the probabilities of finding a packet in a buffer queue of

infinite length; L: the full input load.
Based on the previous equations, the average waiting time for a request in the queue is calculated by the

equation (22):

The request received in the buffer will wait until the communication line is released, i.e. until
the processing of the message about the acceptance of the previous request is completed. Probabilities
of finding a packet in a buffer queue of infinite length is calculated by the equation (20):

𝑄𝑄(𝑁𝑁, 𝐿𝐿) =
𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 1
1 − 𝐿𝐿/𝑁𝑁

∑ 𝐿𝐿𝑘𝑘

𝑘𝑘!
𝑁𝑁−1
𝑘𝑘=0 + 𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 𝑁𝑁
𝑁𝑁 − 𝐿𝐿

(20)

Where 𝐿𝐿 = 𝜇𝜇
𝛾𝛾 ∶ full input load.

The average number of requests can be found by the equation (21):

𝐴𝐴𝑁𝑁 = 𝐿𝐿
𝑁𝑁 − 𝐿𝐿 ∗ 𝑄𝑄(𝑁𝑁, 𝐿𝐿) (21)

Where 𝐴𝐴𝑁𝑁: the average number of requests; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load.

Based on the previous equations, the average waiting time for a request in the queue is
calculated by the equation (22):

𝜏𝜏𝑊𝑊 = 𝐴𝐴𝑁𝑁
𝜇𝜇 = 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (22)

Where 𝐴𝐴𝑁𝑁: average number of requests; 𝜇𝜇: average intensity.
The average processing time of a single request is determined by the equation (23):
𝜏𝜏𝐴𝐴 = 𝐿𝐿

𝜇𝜇 = 1
𝛾𝛾 (23)

Where 𝐿𝐿: full input load; 𝜇𝜇: average intensity.
Thus, if the parameters 𝜏𝜏𝑊𝑊 and 𝜏𝜏𝐴𝐴 are unchanged, the time of sending the request 𝜏𝜏𝑆𝑆 is

determined by the equation (24):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (24)

Where 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the
known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load, N: the number of requests.

Corollary-2: To reduce the volume of transmitted requests, it is necessary to transmit requests
of greater length to speed up the time of receiving the handshake. This corollary was based on the
analysis of equation (24).

Considering that all requests have equal length and average transmission time, the duration of
the communication channel occupation when transmitting one request after establishing a connection
between the hacker and the user is determined by the equation (25):

𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑀𝑀 (25)

Where 𝑅𝑅𝑀𝑀 = 𝜏𝜏𝑀𝑀 × 𝐶𝐶ℎ: the volume of transmitted requests.
Thus, the total time for sending requests is determined by the equation (26):

 (22)

Where AN: average number of requests;

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

: average intensity.
The average processing time of a single request is determined by the equation (23):

The request received in the buffer will wait until the communication line is released, i.e. until
the processing of the message about the acceptance of the previous request is completed. Probabilities
of finding a packet in a buffer queue of infinite length is calculated by the equation (20):

𝑄𝑄(𝑁𝑁, 𝐿𝐿) =
𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 1
1 − 𝐿𝐿/𝑁𝑁

∑ 𝐿𝐿𝑘𝑘

𝑘𝑘!
𝑁𝑁−1
𝑘𝑘=0 + 𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 𝑁𝑁
𝑁𝑁 − 𝐿𝐿

(20)

Where 𝐿𝐿 = 𝜇𝜇
𝛾𝛾 ∶ full input load.

The average number of requests can be found by the equation (21):

𝐴𝐴𝑁𝑁 = 𝐿𝐿
𝑁𝑁 − 𝐿𝐿 ∗ 𝑄𝑄(𝑁𝑁, 𝐿𝐿) (21)

Where 𝐴𝐴𝑁𝑁: the average number of requests; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load.

Based on the previous equations, the average waiting time for a request in the queue is
calculated by the equation (22):

𝜏𝜏𝑊𝑊 = 𝐴𝐴𝑁𝑁
𝜇𝜇 = 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (22)

Where 𝐴𝐴𝑁𝑁: average number of requests; 𝜇𝜇: average intensity.
The average processing time of a single request is determined by the equation (23):
𝜏𝜏𝐴𝐴 = 𝐿𝐿

𝜇𝜇 = 1
𝛾𝛾 (23)

Where 𝐿𝐿: full input load; 𝜇𝜇: average intensity.
Thus, if the parameters 𝜏𝜏𝑊𝑊 and 𝜏𝜏𝐴𝐴 are unchanged, the time of sending the request 𝜏𝜏𝑆𝑆 is

determined by the equation (24):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (24)

Where 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the
known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load, N: the number of requests.

Corollary-2: To reduce the volume of transmitted requests, it is necessary to transmit requests
of greater length to speed up the time of receiving the handshake. This corollary was based on the
analysis of equation (24).

Considering that all requests have equal length and average transmission time, the duration of
the communication channel occupation when transmitting one request after establishing a connection
between the hacker and the user is determined by the equation (25):

𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑀𝑀 (25)

Where 𝑅𝑅𝑀𝑀 = 𝜏𝜏𝑀𝑀 × 𝐶𝐶ℎ: the volume of transmitted requests.
Thus, the total time for sending requests is determined by the equation (26):

 (23)

Where L: full input load;

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 average intensity.
Thus, if the parameters

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 and

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 are unchanged, the time of sending the request

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

 is determined by the
equation (24):

International Journal of Information and Communication Technologies, №8 (2), December, 2021
26

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

The request received in the buffer will wait until the communication line is released, i.e. until
the processing of the message about the acceptance of the previous request is completed. Probabilities
of finding a packet in a buffer queue of infinite length is calculated by the equation (20):

𝑄𝑄(𝑁𝑁, 𝐿𝐿) =
𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 1
1 − 𝐿𝐿/𝑁𝑁

∑ 𝐿𝐿𝑘𝑘

𝑘𝑘!
𝑁𝑁−1
𝑘𝑘=0 + 𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 𝑁𝑁
𝑁𝑁 − 𝐿𝐿

(20)

Where 𝐿𝐿 = 𝜇𝜇
𝛾𝛾 ∶ full input load.

The average number of requests can be found by the equation (21):

𝐴𝐴𝑁𝑁 = 𝐿𝐿
𝑁𝑁 − 𝐿𝐿 ∗ 𝑄𝑄(𝑁𝑁, 𝐿𝐿) (21)

Where 𝐴𝐴𝑁𝑁: the average number of requests; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load.

Based on the previous equations, the average waiting time for a request in the queue is
calculated by the equation (22):

𝜏𝜏𝑊𝑊 = 𝐴𝐴𝑁𝑁
𝜇𝜇 = 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (22)

Where 𝐴𝐴𝑁𝑁: average number of requests; 𝜇𝜇: average intensity.
The average processing time of a single request is determined by the equation (23):
𝜏𝜏𝐴𝐴 = 𝐿𝐿

𝜇𝜇 = 1
𝛾𝛾 (23)

Where 𝐿𝐿: full input load; 𝜇𝜇: average intensity.
Thus, if the parameters 𝜏𝜏𝑊𝑊 and 𝜏𝜏𝐴𝐴 are unchanged, the time of sending the request 𝜏𝜏𝑆𝑆 is

determined by the equation (24):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (24)

Where 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the
known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load, N: the number of requests.

Corollary-2: To reduce the volume of transmitted requests, it is necessary to transmit requests
of greater length to speed up the time of receiving the handshake. This corollary was based on the
analysis of equation (24).

Considering that all requests have equal length and average transmission time, the duration of
the communication channel occupation when transmitting one request after establishing a connection
between the hacker and the user is determined by the equation (25):

𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑀𝑀 (25)

Where 𝑅𝑅𝑀𝑀 = 𝜏𝜏𝑀𝑀 × 𝐶𝐶ℎ: the volume of transmitted requests.
Thus, the total time for sending requests is determined by the equation (26):

 (24)

Where Rv: the known volume of the request in bits; Ch: the channel capacity bit/sec; RA: the known volume
of the request acceptance message; Q(N,L): the probabilities of finding a packet in a buffer queue of infinite
length; L: the full input load, N: the number of requests.

Corollary-2: To reduce the volume of transmitted requests, it is necessary to transmit requests of greater
length to speed up the time of receiving the handshake. This corollary was based on the analysis of equation (24).

Considering that all requests have equal length and average transmission time, the duration of the
communication channel occupation when transmitting one request after establishing a connection between the
hacker and the user is determined by the equation (25):

The request received in the buffer will wait until the communication line is released, i.e. until
the processing of the message about the acceptance of the previous request is completed. Probabilities
of finding a packet in a buffer queue of infinite length is calculated by the equation (20):

𝑄𝑄(𝑁𝑁, 𝐿𝐿) =
𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 1
1 − 𝐿𝐿/𝑁𝑁

∑ 𝐿𝐿𝑘𝑘

𝑘𝑘!
𝑁𝑁−1
𝑘𝑘=0 + 𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 𝑁𝑁
𝑁𝑁 − 𝐿𝐿

(20)

Where 𝐿𝐿 = 𝜇𝜇
𝛾𝛾 ∶ full input load.

The average number of requests can be found by the equation (21):

𝐴𝐴𝑁𝑁 = 𝐿𝐿
𝑁𝑁 − 𝐿𝐿 ∗ 𝑄𝑄(𝑁𝑁, 𝐿𝐿) (21)

Where 𝐴𝐴𝑁𝑁: the average number of requests; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load.

Based on the previous equations, the average waiting time for a request in the queue is
calculated by the equation (22):

𝜏𝜏𝑊𝑊 = 𝐴𝐴𝑁𝑁
𝜇𝜇 = 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (22)

Where 𝐴𝐴𝑁𝑁: average number of requests; 𝜇𝜇: average intensity.
The average processing time of a single request is determined by the equation (23):
𝜏𝜏𝐴𝐴 = 𝐿𝐿

𝜇𝜇 = 1
𝛾𝛾 (23)

Where 𝐿𝐿: full input load; 𝜇𝜇: average intensity.
Thus, if the parameters 𝜏𝜏𝑊𝑊 and 𝜏𝜏𝐴𝐴 are unchanged, the time of sending the request 𝜏𝜏𝑆𝑆 is

determined by the equation (24):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (24)

Where 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the
known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load, N: the number of requests.

Corollary-2: To reduce the volume of transmitted requests, it is necessary to transmit requests
of greater length to speed up the time of receiving the handshake. This corollary was based on the
analysis of equation (24).

Considering that all requests have equal length and average transmission time, the duration of
the communication channel occupation when transmitting one request after establishing a connection
between the hacker and the user is determined by the equation (25):

𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑀𝑀 (25)

Where 𝑅𝑅𝑀𝑀 = 𝜏𝜏𝑀𝑀 × 𝐶𝐶ℎ: the volume of transmitted requests.
Thus, the total time for sending requests is determined by the equation (26):

 (25)
Where

The request received in the buffer will wait until the communication line is released, i.e. until
the processing of the message about the acceptance of the previous request is completed. Probabilities
of finding a packet in a buffer queue of infinite length is calculated by the equation (20):

𝑄𝑄(𝑁𝑁, 𝐿𝐿) =
𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 1
1 − 𝐿𝐿/𝑁𝑁

∑ 𝐿𝐿𝑘𝑘

𝑘𝑘!
𝑁𝑁−1
𝑘𝑘=0 + 𝐿𝐿𝑁𝑁

𝑁𝑁! ∗ 𝑁𝑁
𝑁𝑁 − 𝐿𝐿

(20)

Where 𝐿𝐿 = 𝜇𝜇
𝛾𝛾 ∶ full input load.

The average number of requests can be found by the equation (21):

𝐴𝐴𝑁𝑁 = 𝐿𝐿
𝑁𝑁 − 𝐿𝐿 ∗ 𝑄𝑄(𝑁𝑁, 𝐿𝐿) (21)

Where 𝐴𝐴𝑁𝑁: the average number of requests; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load.

Based on the previous equations, the average waiting time for a request in the queue is
calculated by the equation (22):

𝜏𝜏𝑊𝑊 = 𝐴𝐴𝑁𝑁
𝜇𝜇 = 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (22)

Where 𝐴𝐴𝑁𝑁: average number of requests; 𝜇𝜇: average intensity.
The average processing time of a single request is determined by the equation (23):
𝜏𝜏𝐴𝐴 = 𝐿𝐿

𝜇𝜇 = 1
𝛾𝛾 (23)

Where 𝐿𝐿: full input load; 𝜇𝜇: average intensity.
Thus, if the parameters 𝜏𝜏𝑊𝑊 and 𝜏𝜏𝐴𝐴 are unchanged, the time of sending the request 𝜏𝜏𝑆𝑆 is

determined by the equation (24):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (24)

Where 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the
known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the probabilities of finding a packet in a
buffer queue of infinite length; 𝐿𝐿: the full input load, N: the number of requests.

Corollary-2: To reduce the volume of transmitted requests, it is necessary to transmit requests
of greater length to speed up the time of receiving the handshake. This corollary was based on the
analysis of equation (24).

Considering that all requests have equal length and average transmission time, the duration of
the communication channel occupation when transmitting one request after establishing a connection
between the hacker and the user is determined by the equation (25):

𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑀𝑀 (25)

Where 𝑅𝑅𝑀𝑀 = 𝜏𝜏𝑀𝑀 × 𝐶𝐶ℎ: the volume of transmitted requests.
Thus, the total time for sending requests is determined by the equation (26):

 the volume of transmitted requests.
Thus, the total time for sending requests is determined by the equation (26):

𝜏𝜏 = 𝜏𝜏𝑆𝑆 + 𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑆𝑆 + 𝑁𝑁 × 𝜏𝜏𝐻𝐻 + 𝜏𝜏𝑀𝑀 + 𝜏𝜏𝑅𝑅 + 𝜏𝜏𝑊𝑊

= 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑅𝑅𝐴𝐴

𝐶𝐶ℎ
+ 𝑅𝑅𝑀𝑀

𝐶𝐶ℎ
+ 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (26)

Where 𝜏𝜏𝑆𝑆: the time for sending a request; 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the

channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the
probabilities of finding a packet in a buffer queue of infinite length; 𝐿𝐿: the full input load, N: the
number of requests.

…
C. Wi-Fi Blockchain-Featured Hacking Process

The last phase is hacking the wireless network using BTFAT. Blocks in the blockchain system
can only create a certain number of bitcoins, transactions must have a certain format and correct
signatures for spent bitcoins, a transaction cannot be performed twice within the same blockchain,
etc. The blockchain cannot be hacked by attacking the encrypted traffic of an individual node: if the
consensus rules are violated in the block, the blockchain system denies the operation of an individual
node, even if other nodes believe that an intrusion into the chain of records did not occur.

To hack network with blockchain technology, ARP spoofing is performed after capturing the
network traffic. This is an attack committed when sending ARP messages to the local network. The
purpose of this attack is to link the hacker's MAC address to the IP address of another host, such as
the default gateway. Thus, any traffic directed to a specific IP address is sent to the hacker. After
making an attack on the network, the hacker inserts a malicious script into the HTML pages that the
user views the command “to call the miner” and deploys an HTTP server on its computer to serve the
miner. Figure 2.1 depicts the process of hacking Wi-Fi with BTFAT. The goal of the third phase is
to carry out an autonomous attack on the Wi-fi network to introduce a malicious code. With the help
of the built-in BATTAT tools, it is possible to analyze and edit traffic. For the purity of the hacking
process, only one line of code is embedded in the HTML page, which calls the miner. After the traffic
is captured, the JavaScript code is embedded in it, and an injector is created. The created injector adds
a string to the HTML with a call to the JavaScript miner. The packet-capturing and saving processes
are shown in Table 3.

Figure 2.1 - The process of hacking Wi-Fi with BTFAT

Table 3 - Wi-Fi Hacking process with BTFAT

 (26):

Where

𝑃𝑃𝐶𝐶 = 1
𝑃𝑃𝑅𝑅

𝑚𝑚+1

𝑚𝑚! × (𝑚𝑚 − 𝑃𝑃𝑅𝑅) + ∑ 𝑃𝑃𝑅𝑅
𝑚𝑚

𝑚𝑚!
𝑚𝑚
𝑚𝑚=0

(12)

Where 𝑚𝑚: the number of processors.
The average delay in sending requests (𝐷𝐷𝐴𝐴) can be obtained based on the number of requests

sent (𝑆𝑆𝑅𝑅), depending on the average number of requests in the queue (𝑄𝑄𝐴𝐴):

𝑄𝑄𝐴𝐴 = 𝑃𝑃𝑅𝑅
𝑚𝑚+1 ∗ 𝑃𝑃𝐶𝐶

𝑚𝑚𝑚𝑚! (1 − 𝑃𝑃𝑅𝑅
𝑚𝑚)2

, (13)

𝑆𝑆𝑅𝑅 = 𝑄𝑄𝐴𝐴 + 𝑃𝑃𝐶𝐶 , (14)
𝐷𝐷𝐴𝐴 = 𝑆𝑆𝑅𝑅

𝛽𝛽 + (1 − 𝐶𝐶) × 𝛽𝛽 (15)

Where 𝑚𝑚: the number of processors; 𝑃𝑃𝐶𝐶: the probability that the communication channel for
sending the request is free; 𝑃𝑃𝑅𝑅: the performance of request processing by the user; 𝛽𝛽: the intensity of
the elementary stream requests; 𝐶𝐶: the probability of self-classification of a new request stream by a
second access point.

Hypothesis-2: The smaller the volume of transmitted requests, the longer it takes for a hacker
to get a handshake.

Proof: Each request has the same length and requires a transmission time (𝜏𝜏𝑇𝑇). The time of
transmission of the message about the client's acceptance of the request is assumed to be equal to 𝜏𝜏𝑅𝑅.
The time for sending a request (𝜏𝜏𝑆𝑆) is calculated using the equation (16):

𝜏𝜏𝑆𝑆 = 𝑁𝑁 × 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑅𝑅 + 𝑁𝑁 × 𝜏𝜏𝐴𝐴 + 𝜏𝜏𝑊𝑊 (16)

Where 𝜏𝜏𝑇𝑇: the transmission time of the request; N: the number of requests; 𝜏𝜏𝐴𝐴: the average
processing time of the response received by the hacker; 𝜏𝜏𝑊𝑊: the average waiting time for a request in
the queue until the communication line is free; 𝜏𝜏𝑅𝑅: the time of transmission of the message about the
client's acceptance of the request.

Since the bandwidth of the communication channel and the average length of each request are
known, the average time for its transmission can be determined by the equation (17):

𝜏𝜏𝑇𝑇 = 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

(17)

Where 𝑅𝑅𝑣𝑣: a known volume of the request in bits; 𝐶𝐶ℎ: channel capacity bit/sec.
The time of transmission of the message about the client's acceptance of the request is calculated

similarly by the equation (18):

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐴𝐴
𝐶𝐶ℎ

(18)

Where 𝑅𝑅𝐴𝐴: known volume of the request acceptance message; 𝐶𝐶ℎ: channel capacity bit/sec.
To calculate the average waiting time 𝜏𝜏𝑊𝑊 and the average message processing time 𝜏𝜏𝐴𝐴, it is

assumed that the input stream of packets from the user forms a simple stream with an average intensity
𝜇𝜇, and the average service time 𝐴𝐴𝑠𝑠 calculated by the equation: (19):

𝐴𝐴𝑠𝑠 = 1
𝛾𝛾 (19)

: the time for sending a request; Rv: the known volume of the request in bits; Ch: the channel
capacity bit/sec; RA: the known volume of the request acceptance message; Q(N,L): the probabilities of finding
a packet in a buffer queue of infinite length; L: the full input load, N: the number of requests.

…
C. Wi-Fi Blockchain-Featured Hacking Process
The last phase is hacking the wireless network using BTFAT. Blocks in the blockchain system can only

create a certain number of bitcoins, transactions must have a certain format and correct signatures for spent
bitcoins, a transaction cannot be performed twice within the same blockchain, etc. The blockchain cannot be
hacked by attacking the encrypted traffic of an individual node: if the consensus rules are violated in the block,
the blockchain system denies the operation of an individual node, even if other nodes believe that an intrusion
into the chain of records did not occur.

To hack network with blockchain technology, ARP spoofing is performed after capturing the network traffic.
This is an attack committed when sending ARP messages to the local network. The purpose of this attack is to
link the hacker's MAC address to the IP address of another host, such as the default gateway. Thus, any traffic
directed to a specific IP address is sent to the hacker. After making an attack on the network, the hacker inserts
a malicious script into the HTML pages that the user views the command “to call the miner” and deploys an
HTTP server on its computer to serve the miner. Figure 2.1 depicts the process of hacking Wi-Fi with BTFAT.
The goal of the third phase is to carry out an autonomous attack on the Wi-fi network to introduce a malicious
code. With the help of the built-in BATTAT tools, it is possible to analyze and edit traffic. For the purity of the
hacking process, only one line of code is embedded in the HTML page, which calls the miner. After the traffic is
captured, the JavaScript code is embedded in it, and an injector is created. The created injector adds a string to
the HTML with a call to the JavaScript miner. The packet-capturing and saving processes are shown in Table 3.

𝜏𝜏 = 𝜏𝜏𝑆𝑆 + 𝜏𝜏𝐻𝐻 = 𝑁𝑁 × 𝜏𝜏𝑆𝑆 + 𝑁𝑁 × 𝜏𝜏𝐻𝐻 + 𝜏𝜏𝑀𝑀 + 𝜏𝜏𝑅𝑅 + 𝜏𝜏𝑊𝑊

= 𝑁𝑁 ∗ 𝑅𝑅𝑣𝑣
𝐶𝐶ℎ

+ 𝑁𝑁
𝛾𝛾 + 𝑅𝑅𝐴𝐴

𝐶𝐶ℎ
+ 𝑅𝑅𝑀𝑀

𝐶𝐶ℎ
+ 𝑄𝑄(𝑁𝑁, 𝐿𝐿)

𝛾𝛾(𝑁𝑁 − 𝐿𝐿) (26)

Where 𝜏𝜏𝑆𝑆: the time for sending a request; 𝑅𝑅𝑣𝑣: the known volume of the request in bits; 𝐶𝐶ℎ: the
channel capacity bit/sec; 𝑅𝑅𝐴𝐴: the known volume of the request acceptance message; 𝑄𝑄(𝑁𝑁, 𝐿𝐿): the
probabilities of finding a packet in a buffer queue of infinite length; 𝐿𝐿: the full input load, N: the
number of requests.

…
C. Wi-Fi Blockchain-Featured Hacking Process

The last phase is hacking the wireless network using BTFAT. Blocks in the blockchain system
can only create a certain number of bitcoins, transactions must have a certain format and correct
signatures for spent bitcoins, a transaction cannot be performed twice within the same blockchain,
etc. The blockchain cannot be hacked by attacking the encrypted traffic of an individual node: if the
consensus rules are violated in the block, the blockchain system denies the operation of an individual
node, even if other nodes believe that an intrusion into the chain of records did not occur.

To hack network with blockchain technology, ARP spoofing is performed after capturing the
network traffic. This is an attack committed when sending ARP messages to the local network. The
purpose of this attack is to link the hacker's MAC address to the IP address of another host, such as
the default gateway. Thus, any traffic directed to a specific IP address is sent to the hacker. After
making an attack on the network, the hacker inserts a malicious script into the HTML pages that the
user views the command “to call the miner” and deploys an HTTP server on its computer to serve the
miner. Figure 2.1 depicts the process of hacking Wi-Fi with BTFAT. The goal of the third phase is
to carry out an autonomous attack on the Wi-fi network to introduce a malicious code. With the help
of the built-in BATTAT tools, it is possible to analyze and edit traffic. For the purity of the hacking
process, only one line of code is embedded in the HTML page, which calls the miner. After the traffic
is captured, the JavaScript code is embedded in it, and an injector is created. The created injector adds
a string to the HTML with a call to the JavaScript miner. The packet-capturing and saving processes
are shown in Table 3.

Figure 2.1 - The process of hacking Wi-Fi with BTFAT

Table 3 - Wi-Fi Hacking process with BTFAT

Figure 2.1 - The process of hacking Wi-Fi with BTFAT

International Journal of Information and Communication Technologies, №8 (2), December, 2021
27

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

Table 3 - Wi-Fi Hacking process with BTFAT
Algorithm-3: Wi-Fi hacking process with BTFAT
1. Initialization: { captured network traffic; user's IP address; hacker's MAC address,

N wireless network, embedded in the network miner; ARP spoofing; : HTML pages, iterate
through all pages, JavaScript code; getting started miner; hacker's computer}

2. Input: {
3. Output: { }
4. Set
5. Do process
6. Link to
7. For
8. If
9. Set
10. End if
11. Deploy
12. Do

Algorithm-3 explains the process of hacking Wi-Fi with BTFAT. In step 1, the variables are initialized for
the process of hacking Wi-Fi. Steps 2-3 give the input and output processes, respectively. In Step 4, the network
for hacking, the user's IP address and the hacker's MAC address are determined. Step 5 is an ARP spoofing
attack on the network. Step 6 is linking the hacker's MAC address to the user's IP address to direct traffic from
the user's IP address to the hacker. Step 7 is iteration through each page directed to the user. In Step 8 we
check that the HTML page belongs to the captured traffic. In Steps 9-10 we embed the JavaScript code into the
captured traffic, thus triggering the miner. In Step 11, we deploy the HTTP server on the hacker's computer to
serve the miner. In Step 12, JavaScript code is embedded in HTML pages for mining.

A large amount of data contained in the captured packets is analyzed in order to get the password.
Condition: m packets are used to analyze n amounts of data. Let’s make the parameters of -th packets as

. This parameter is set to analyze packets by parameters when searching for an encrypted
password.

The analysis is performed for each packet from the 1st to the -th, and a single volume of the -th amount of
data is used. Let the use of the -th order packet to analyze a single volume of the -th amount of data be given
as .

Packet analysis takes a certain time the amount of which depends on the speed of analysis. Therefore, let the
speed from analyzing the unit volume of the -th amount of data be set as .

This mathematical model explains a data analysis plan that provides the maximum speed of analysis under
the specified restrictions on data packets.

The volume of analysis of the -th amount of data is set as a vector of variables equal to ,
where is the volume of analysis of the -th type of data.

When analyzing packets, a restriction is imposed on their number. It follows from the variable vector that
the restriction on using packages for analyzing all data is set by the expression:

Based on the speed of analysis of the -th data quantity , the objective function is calculated using the

equation (28):

A mathematical model for analyzing the m number of packets that contain n amount of data is defined as a
system of the following expressions:

Where M: the process of analyzing packages; m: the number of the packets; n: the amount of data.
Let the set of attacks made by the BTFAT be given by the expression (30):

Table 3 - Wi-Fi Hacking process with BTFAT
Algorithm-3: Wi-Fi hacking process with BTFAT
1. Initialization: {𝑇𝑇𝑁𝑁: captured network traffic; 𝑈𝑈𝑖𝑖𝑖𝑖: user's IP address; 𝐻𝐻𝑎𝑎: hacker's MAC

address, N: wireless network, 𝐸𝐸𝑚𝑚: embedded in the network miner; 𝐴𝐴𝑠𝑠𝑖𝑖: ARP spoofing; 𝑃𝑃ℎ𝑡𝑡:
HTML pages, 𝑆𝑆: iterate through all pages, 𝐽𝐽𝑆𝑆𝑐𝑐: JavaScript code; 𝑀𝑀𝑠𝑠: getting started miner; 𝐻𝐻𝑐𝑐:
hacker's computer}

2. Input: { 𝑇𝑇𝑁𝑁, 𝑈𝑈𝑖𝑖𝑖𝑖, 𝐻𝐻𝑎𝑎, 𝑁𝑁}
3. Output: {𝐸𝐸𝑚𝑚}
4. Set 𝑈𝑈𝑖𝑖𝑖𝑖, 𝐻𝐻𝑎𝑎,𝑁𝑁
5. Do process 𝐴𝐴𝑠𝑠𝑖𝑖 → 𝑁𝑁
6. Link 𝑈𝑈𝑖𝑖𝑖𝑖 to 𝐻𝐻𝑎𝑎
7. For 𝑃𝑃ℎ𝑡𝑡= 0 𝑡𝑡𝑡𝑡 𝑃𝑃ℎ𝑡𝑡 = 𝑆𝑆
8. If 𝑃𝑃ℎ𝑡𝑡 ∈ 𝑇𝑇𝑁𝑁
9. Set 𝐽𝐽𝑆𝑆𝑐𝑐 → 𝑇𝑇𝑁𝑁 = 𝑀𝑀𝑠𝑠
10. End if
11. Deploy 𝑃𝑃ℎ𝑡𝑡 𝑡𝑡𝑜𝑜 𝐻𝐻𝑐𝑐
12. Do 𝐽𝐽𝑆𝑆𝑐𝑐 → 𝑃𝑃ℎ𝑡𝑡

Algorithm-3 explains the process of hacking Wi-Fi with BTFAT. In step 1, the variables are initialized for the process
of hacking Wi-Fi. Steps 2-3 give the input and output processes, respectively. In Step 4, the network for hacking, the user's IP
address and the hacker's MAC address are determined. Step 5 is an ARP spoofing attack on the network. Step 6 is linking the
hacker's MAC address to the user's IP address to direct traffic from the user's IP address to the hacker. Step 7 is iteration through
each page directed to the user. In Step 8 we check that the HTML page belongs to the captured traffic. In Steps 9-10 we embed
the JavaScript code into the captured traffic, thus triggering the miner. In Step 11, we deploy the HTTP server on the hacker's
computer to serve the miner. In Step 12, JavaScript code is embedded in HTML pages for mining.

A large amount of data contained in the captured packets is analyzed in order to get the password.
Condition: m packets are used to analyze n amounts of data. Let’s make the parameters of 𝑖𝑖-th packets as

𝑏𝑏𝑖𝑖(𝑖𝑖 = 1,2,3,… ,𝑚𝑚). This parameter is set to analyze packets by parameters when searching for an encrypted password.
The analysis is performed for each packet from the 1st to the 𝑖𝑖-th, and a single volume of the 𝑗𝑗-th amount of data is used.

Let the use of the 𝑖𝑖-th order packet to analyze a single volume of the 𝑗𝑗-th amount of data be given as
𝑎𝑎𝑖𝑖𝑖𝑖(𝑖𝑖 = 1,2,3,… ,𝑚𝑚; 𝑗𝑗=1,2,3, … , 𝑜𝑜).

Packet analysis takes a certain time the amount of which depends on the speed of analysis. Therefore, let the speed from
analyzing the unit volume of the 𝑗𝑗-th amount of data be set as 𝑐𝑐𝑖𝑖(𝑗𝑗 = 1,2,3,… , 𝑜𝑜).

This mathematical model explains a data analysis plan that provides the maximum speed of analysis under the specified
restrictions on data packets.

The volume of analysis of the 𝑗𝑗-th amount of data is set as a vector of variables equal to 𝑋𝑋 = (𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3,… , 𝑋𝑋𝑜𝑜), where
𝑥𝑥𝑖𝑖(𝑗𝑗 = 1,2,3,… , 𝑜𝑜) is the volume of analysis of the 𝑗𝑗-th type of data.

When analyzing packets, a restriction is imposed on their number. It follows from the variable vector that the restriction
on using packages for analyzing all data is set by the expression:

𝑎𝑎𝑖𝑖1𝑥𝑥1 + 𝑎𝑎𝑖𝑖2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 (27)

Based on the speed of analysis of the 𝑗𝑗-th data quantity 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖, the objective function is calculated using the equation (28):

𝑍𝑍(𝑋𝑋) = 𝑐𝑐1𝑥𝑥1 + 𝑐𝑐2𝑥𝑥2 + ⋯+ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 (28)

A mathematical model for analyzing the m number of packets that contain n amount of data is defined as a system of the
following expressions:

𝑀𝑀 =

{

𝑍𝑍(𝑋𝑋) = 𝑐𝑐1𝑥𝑥1 + 𝑐𝑐2𝑥𝑥2 +⋯+ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 → 𝑚𝑚𝑎𝑎𝑥𝑥,
𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯+ 𝑎𝑎1𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏1,
𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯+ 𝑎𝑎2𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏2,
………………………………… .

𝑎𝑎𝑚𝑚1𝑥𝑥1 + 𝑎𝑎𝑚𝑚2𝑥𝑥2 +⋯+ 𝑎𝑎𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖 ≤ 𝑏𝑏𝑚𝑚,
𝑥𝑥𝑖𝑖 ≥ 0, 𝑗𝑗 = 1,2,3,… , 𝑜𝑜.

(29)

Where M: the process of analyzing packages; m: the number of the packets; n: the amount of data.
Let the set of attacks made by the BTFAT be given by the expression (30):

International Journal of Information and Communication Technologies, №8 (2), December, 2021
28

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

Where the set of values of the -th parameter of a particular attack that determines the type
of attack. Each attack is a vector , where .

Rainbow tables are defined as an expression (31):

Where set of values of the -th parameter of the rainbow table.
The network for hacking is indicated by the expression (32):

Where the set of values of the -th parameter of the wireless network.
The success of hacking the network using the BTFAT is related to the attack used to break into the wireless

network and the formation of rainbow tables in the process of decrypting the password. Thus, the function
that sets the level of successful hacking of the network by an attack c the application of rainbow tables

 to hack the wireless network is denoted by the expression (33):

Where the function that sets the level of successful hacking; the attack; the rainbow tables; the
wireless network.

The function that determines the degree of success from applying an attack to a wireless network is calculated
by the expression (34):

Where the function that determines the degree of success from applying an attack to a wireless network;
 the wireless network; the attack.
The probability of a successful application of a hacker attack with rainbow tables is calculated:

Where the probability of a successful application of a hacker attack with rainbow tables; the attack;
 the rainbow tables.
Thus, based on the expressions (33), (34), (35), the function is expressed as:

Where the function that sets the level of successful hacking; the function that determines
the degree of success from applying an attack to a wireless network; the probability of a successful
application of a hacker attack with rainbow tables.

Define the function . To do this, consider a family of functions:

Where the set of non-negative real numbers; a function that sets the level of mutual influence of
the wireless network parameter and the attack parameter on the network:

if an attack with the value of the parameter is not applicable to a wireless network with the
parameter value.

if the value of the wireless network parameter reduces the probability of a successful attack with the
value of the parameter .

if the value of the wireless network parameter does not affect the applicability of the attack with the
parameter .

𝐾𝐾 ∈ 𝐾𝐾1 × 𝐾𝐾2 × 𝐾𝐾3 …× 𝐾𝐾𝑏𝑏 (30)

Where 𝐾𝐾𝑏𝑏(1, 𝑏𝑏 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅): the set of values of the 𝑖𝑖-th parameter of a particular attack that determines the type of attack. Each
attack �⃗�𝑘 ∈ 𝐾𝐾 is a vector (𝑘𝑘1, 𝑘𝑘2,… , 𝑘𝑘𝑏𝑏+1), where 𝑘𝑘𝑏𝑏⃗⃗⃗⃗ ∈ 𝐾𝐾𝑏𝑏.

Rainbow tables are defined as an expression (31):

𝑦𝑦 ∈ 𝑌𝑌, 𝑌𝑌 ∈ 𝑌𝑌1 × 𝑌𝑌2 × 𝑌𝑌3 …× 𝑌𝑌𝑗𝑗 (31)

Where 𝑌𝑌𝑗𝑗(𝑗𝑗 = 1, 𝑛𝑛̅̅ ̅̅̅): set of values of the 𝑗𝑗-th parameter of the rainbow table.
The network for hacking is indicated by the expression (32):

𝑔𝑔 ∈ 𝐺𝐺, 𝐺𝐺 ∈ 𝐺𝐺1 × 𝐺𝐺2 × 𝐺𝐺3 …× 𝐺𝐺𝑓𝑓 (32)

Where 𝐺𝐺𝑓𝑓(𝑓𝑓 = 1,𝑚𝑚̅̅ ̅̅ ̅̅): the set of values of the 𝑓𝑓-th parameter of the wireless network.
The success of hacking the network using the BTFAT is related to the attack used to break into the wireless network and

the formation of rainbow tables in the process of decrypting the password. Thus, the function that sets the level of successful
hacking of the network by an attack �⃗�𝑘 ∈ 𝐾𝐾 c the application of rainbow tables 𝑦𝑦 ∈ 𝑌𝑌 to hack the wireless network 𝑔𝑔 ∈ 𝐺𝐺 is
denoted by the expression (33):

𝛿𝛿:𝐾𝐾 × 𝑌𝑌 × 𝐺𝐺 → [0; 1] (33)

Where 𝛿𝛿: the function that sets the level of successful hacking; 𝐾𝐾: the attack; 𝑌𝑌: the rainbow tables; 𝐺𝐺: the wireless

network.
The function that determines the degree of success from applying an attack to a wireless network is calculated by the

expression (34):
𝛽𝛽: 𝐺𝐺 × 𝐾𝐾 → [0; 1] (34)

Where 𝛽𝛽: the function that determines the degree of success from applying an attack to a wireless network; 𝐺𝐺: the wireless

network; 𝐾𝐾: the attack.
The probability of a successful application of a hacker attack with rainbow tables is calculated:

𝛾𝛾: 𝑌𝑌 × 𝐾𝐾 → [0; 1] (35)

Where 𝛾𝛾: the probability of a successful application of a hacker attack with rainbow tables; 𝐾𝐾: the attack; 𝑌𝑌: the rainbow

tables.
Thus, based on the expressions (33), (34), (35), the function 𝛿𝛿 is expressed as:

𝛿𝛿(�̅�𝑘, �̅�𝑦, �̅�𝑔) = 𝛽𝛽(�̅�𝑔, �̅�𝑘) ∗ 𝛾𝛾(�̅�𝑦, �̅�𝑘) (36)

Where 𝛿𝛿(�̅�𝑘, �̅�𝑦, �̅�𝑔): the function that sets the level of successful hacking; 𝛽𝛽(�̅�𝑔, �̅�𝑘): the function that determines the degree

of success from applying an attack to a wireless network; 𝛾𝛾(�̅�𝑦, �̅�𝑘): the probability of a successful application of a hacker attack
with rainbow tables.

Define the function 𝛽𝛽(�̅�𝑔, �̅�𝑘). To do this, consider a family of functions:
𝛽𝛽𝑢𝑢ℎ: 𝐺𝐺𝑔𝑔 × 𝐾𝐾ℎ → 𝑅𝑅+ (37)

Where 𝑅𝑅+: the set of non-negative real numbers; 𝛽𝛽𝑢𝑢ℎ: a function that sets the level of mutual influence of the wireless

network parameter 𝐺𝐺𝑔𝑔 and the attack parameter 𝑘𝑘ℎ on the network:
𝛽𝛽𝑢𝑢ℎ(𝑔𝑔, 𝑘𝑘) = 0, (38)

if an attack with the value of the parameter 𝑘𝑘 ∈ 𝐾𝐾ℎ is not applicable to a wireless network with the с ∈ 𝐺𝐺𝑔𝑔 parameter
value.

0 < 𝛽𝛽𝑢𝑢ℎ(𝑔𝑔, 𝑘𝑘) < 1, (39)
if the value of the wireless network parameter с ∈ 𝐺𝐺𝑔𝑔 reduces the probability of a successful attack with the value of the

parameter 𝑘𝑘 ∈ 𝐾𝐾ℎ.
𝛽𝛽𝑢𝑢ℎ(𝑔𝑔, 𝑘𝑘) = 1, (40)

if the value of the wireless network parameter с ∈ 𝐺𝐺𝑔𝑔 does not affect the applicability of the attack with the parameter
𝑘𝑘 ∈ 𝐾𝐾ℎ.

𝛽𝛽𝑢𝑢ℎ(𝑔𝑔, 𝑘𝑘) > 1, (41)

International Journal of Information and Communication Technologies, №8 (2), December, 2021
29

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

if the value of the wireless network parameter indicates that an attack with the parameter
is applicable for hacking.

Denote by the function:

Then, based on the expression (18), the success rate of applying the attack to the wireless network
 is calculated:

Where the attack and wireless network are set by the parameters and ,
respectively.

The function is expressed similarly to the function :

Where the attack and rainbow table are set by the parameters and ,
respectively.

Thus, the function that sets the level of successful hacking of the network by an attack c the application
of rainbow tables to hack the wireless network takes the form:

The reliability of Wi-Fi hacking is characterized by the probability of password decryption, which is
determined by the equation (45):

Where : reliability of Wi-Fi hacking; : the number of initially captured packets; : the number
of denied de-authorization requests.

The probability of decrypting the password from the received handshake is equal to the product of the
probabilities of successful processing of elements of the Wi-Fi hacking process (packet capture, requests for
client deauthorization, half-baked handshake):

Where : the probability of decrypting the password; : the probabilities of successful processing of
elements of the Wi-Fi hacking process.

Theorem-3: The time of cracking the Wi-Fi () depends on the complexity of the password, which is
selected from the space of possible passwords ().

Proof: A password is selected from the space of possible passwords. The size of the space P is determined
by the expression (47):

Where : the size of the possible password space; : the length of characters in the password; : the number
of characters in the password.

Thus, the time is calculated by the expression (48):

Where the time of cracking Wi-Fi; the size of the possible password space.
Hypothesis-3: Hacking a network using the BTFAT tool takes less memory, less processing power, and less

time as compared to other tools designed to hack a network.
Proof: To break into the network, a hacker needs to get a handshake containing an encrypted password

and to decrypt the password. The W function converts the encrypted password into a new password
. The encrypted password in the handshake is written in binary notation, and the password is written

if the value of the wireless network parameter с ∈ 𝐺𝐺𝑔𝑔 indicates that an attack with the parameter 𝑘𝑘 ∈ 𝐾𝐾ℎ is applicable
for hacking.

Denote by 𝛽𝛽𝑢𝑢ℎ̅̅ ̅̅ ̅: 𝐺𝐺𝑔𝑔 × 𝐾𝐾ℎ → [0; 1] the function:

𝛽𝛽𝑢𝑢ℎ̅̅ ̅̅ ̅(𝑔𝑔, 𝑘𝑘) = 𝛽𝛽𝑢𝑢ℎ(𝑔𝑔, 𝑘𝑘)
∑ 𝛽𝛽𝑢𝑢ℎ(𝜀𝜀, 𝑘𝑘)𝜀𝜀∈𝐶𝐶𝑔𝑔

 (42)

Then, based on the expression (18), the success rate of applying the attack �⃗�𝑘 ∈ 𝐾𝐾 to the wireless network 𝑔𝑔 ∈ 𝐺𝐺 is
calculated:

𝛽𝛽(𝑔𝑔 , �⃗�𝑘) = min
ℎ=1,𝑏𝑏+1̅̅ ̅̅ ̅̅ ̅̅ ∏ 𝛽𝛽𝑢𝑢ℎ̅̅ ̅̅ ̅(𝑔𝑔𝑢𝑢, 𝑘𝑘ℎ)

𝑔𝑔=1,𝑠𝑠
 (43)

Where the attack and wireless network are set by the parameters (𝑘𝑘1, 𝑘𝑘2,… , 𝑘𝑘𝑏𝑏+1) and (𝑔𝑔1, 𝑔𝑔2, … , 𝑔𝑔𝑓𝑓), respectively.
The function 𝛾𝛾(�̅�𝑦, �̅�𝑘) is expressed similarly to the function 𝛽𝛽(𝑔𝑔 , �⃗�𝑘):

𝛾𝛾(�̅�𝑦, �̅�𝑘) = min
ℎ=1,𝑏𝑏+1̅̅ ̅̅ ̅̅ ̅̅ ∏ 𝛾𝛾𝑡𝑡ℎ̅̅ ̅̅ (𝑦𝑦𝑡𝑡, 𝑘𝑘ℎ)

𝑡𝑡=1,𝑠𝑠
 (44)

Where the attack and rainbow table are set by the parameters (𝑘𝑘1, 𝑘𝑘2,… , 𝑘𝑘𝑏𝑏+1) and (𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑗𝑗), respectively.
Thus, the function that sets the level of successful hacking of the network by an attack �⃗�𝑘 ∈ 𝐾𝐾 c the application of rainbow

tables 𝑦𝑦 ∈ 𝑌𝑌 to hack the wireless network 𝑔𝑔 ∈ 𝐺𝐺 takes the form:
𝛿𝛿(�̅�𝑘, �̅�𝑦, �̅�𝑔) = min

ℎ=1,𝑏𝑏+1̅̅ ̅̅ ̅̅ ̅̅ ∏ 𝛽𝛽𝑢𝑢ℎ̅̅ ̅̅ ̅(𝑔𝑔𝑢𝑢, 𝑘𝑘ℎ)
𝑔𝑔=1,𝑠𝑠

∗ min
ℎ=1,𝑏𝑏+1̅̅ ̅̅ ̅̅ ̅̅ ∏ 𝛾𝛾𝑡𝑡ℎ̅̅ ̅̅ (𝑦𝑦𝑡𝑡, 𝑘𝑘ℎ)

𝑡𝑡=1,𝑠𝑠
 (21)

The reliability of Wi-Fi hacking is characterized by the probability of password decryption, which is determined by the
equation (45):

𝑃𝑃𝑐𝑐(𝑡𝑡) = 𝑁𝑁0 − ∑𝑛𝑛𝑖𝑖
𝑁𝑁0

 (45)

Where 𝑃𝑃𝑐𝑐(𝑡𝑡): reliability of Wi-Fi hacking; 𝑁𝑁0: the number of initially captured packets; ∑𝑛𝑛𝑖𝑖: the number of denied de-
authorization requests.

The probability of decrypting the password from the received handshake is equal to the product of the probabilities of
successful processing of elements of the Wi-Fi hacking process (packet capture, requests for client deauthorization, half-baked
handshake):

𝑃𝑃𝑐𝑐 = 𝑃𝑃1 × 𝑃𝑃2 × 𝑃𝑃3 …× 𝑃𝑃𝑛𝑛 (46)

Where 𝑃𝑃𝑐𝑐: the probability of decrypting the password; 𝑃𝑃𝑛𝑛: the probabilities of successful processing of elements of the
Wi-Fi hacking process.

Theorem-3: The time of cracking the Wi-Fi (𝑇𝑇𝑐𝑐) depends on the complexity of the password, which is selected from the
space of possible passwords (𝑃𝑃 = 𝐿𝐿𝑐𝑐).

Proof: A password is selected from the space of possible passwords. The size of the space P is determined by the
expression (47):

𝑃𝑃 = 𝐿𝐿𝑐𝑐 (47)

Where 𝑃𝑃: the size of the possible password space; 𝐿𝐿: the length of characters in the password; 𝐶𝐶: the number of characters
in the password.

Thus, the time is calculated by the expression (48):

𝑇𝑇𝑐𝑐 = 𝑃𝑃
109 × 3600 (48)

Where 𝑇𝑇𝑐𝑐: the time of cracking Wi-Fi; 𝑃𝑃: the size of the possible password space.
Hypothesis-3: Hacking a network using the BTFAT tool takes less memory, less processing power, and less time as

compared to other tools designed to hack a network.
Proof: To break into the network, a hacker needs to get a handshake containing an encrypted password and to decrypt

the password. The W function converts the encrypted password 𝑒𝑒(𝑃𝑃) into a new password 𝑊𝑊(𝑒𝑒(𝑃𝑃)). The encrypted password
in the handshake is written in binary notation, and the password is written as numbers in the notation 𝑄𝑄, where 𝑄𝑄: the number

International Journal of Information and Communication Technologies, №8 (2), December, 2021
30

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

as numbers in the notation , where : the number of possible characters for passwords. The C function then
converts the data from the binary number system to the number system. For each encrypted password
, the function calculates a new password . The BTFAT for hacking a wireless network has the ability
to use rainbow tables, which speed up the process of decrypting the password while spending less computer
resources. Using the function, it is possible to precompute data tables (rainbow tables).

To generate a data point in the rainbow table, a possible password is assigned, an encrypted password
 is calculated, then a possible password is calculated, which becomes . This process

continues until the encrypted password starts with twenty 0 (). Such an encrypted password occurs 1
time in about 106 encrypted passwords. The pair that contains an encrypted password starting with
twenty 0 is stored in the table.

The set of such pairs is calculated. Each pair contains a sequence of possible passwords and
encrypted passwords. However, there may be spaces, meaning some passwords may not be present in all
calculations. For a good database without spaces, the memory required to store the calculated pairs is small.
Presumably, in the captured packets, passwords have a certain type: 12 characters, taken from 26 letters of the
alphabet. The encrypted password in the captured packet data set is used to identify the associated password.
To do this, first calculate to get the new encrypted password , then calculate to get

, and so on until the encrypted password starting with twenty 0 (is displayed. The table is then checked
to see which source password, , the encrypted fm password is associated with. Based on , the password
and encrypted passwords are calculated until the original encrypted password , denoted , is
generated. The password that the hacker is looking for is the one that gave rise to , i.e. (, which
is one step earlier in the chain of calculations.

The required computation time is what it takes to find the in the table plus the time it takes to compute
the sequence of encrypted passwords from the corresponding password which is about a million
times less than the time it takes to compute the table itself. Thus, performing a preliminary calculation and
storing the results allows a hacker to get any password with a known encrypted password in a reasonable
amount of time. This process takes a few seconds.

The process of decrypting the password by the rainbow tables of the novel BTFAT is presented in expression (26):

Where the process of decrypting the password by the rainbow tables of the BTFAT; , possible
passwords; the encrypted passwords; a function to convert the encrypted password.

Corollary-3: A hacker can hack any wireless network by getting a handshake. Starting with the first stolen
encrypted password (), the hacker applies the functions and repeatedly, calculating a series of encrypted
passwords and final passwords, until he reaches the encrypted password with twenty 0 in front of it. The
hacker then searches for this last encrypted password in the table (encrypted password E) and identifies the
corresponding password (password E).

Table 4 - Rainbow table
Password Q Encrypted password Q
Password W Encrypted password W
Password E Encrypted password E
Password R Encrypted password R

The hacker then applies the and functions again, starting with the identified password, continuing
until one of the received encrypted passwords in the chain matches the stolen encrypted password:

Where intermediate and final password required for hacking Wi-Fi;
 encrypted password located in the handshake.

of possible characters for passwords. The C function then converts the data from the binary number system to the 𝑄𝑄 number
system. For each encrypted password 𝑒𝑒(𝑃𝑃), the function calculates a new password 𝑊𝑊(𝑒𝑒(𝑃𝑃)). The BTFAT for hacking a
wireless network has the ability to use rainbow tables, which speed up the process of decrypting the password while spending
less computer resources. Using the 𝑊𝑊 function, it is possible to precompute data tables (rainbow tables).

To generate a data point in the rainbow table, a possible password 𝑃𝑃0 is assigned, an encrypted password 𝑒𝑒(𝑃𝑃0) is
calculated, then a possible password 𝑊𝑊(𝑒𝑒(𝑃𝑃0)) is calculated, which becomes 𝑃𝑃1. This process continues until the encrypted
password starts with twenty 0 (𝑒𝑒(𝑃𝑃𝑛𝑛)). Such an encrypted password occurs 1 time in about 106 encrypted passwords. The pair
[𝑃𝑃0, 𝑒𝑒(𝑃𝑃𝑛𝑛)] that contains an encrypted password starting with twenty 0 is stored in the table.

The set of such pairs is calculated. Each pair contains a sequence of possible passwords 𝑃𝑃0, 𝑃𝑃1, … , 𝑃𝑃𝑛𝑛 and encrypted
passwords. However, there may be spaces, meaning some passwords may not be present in all calculations. For a good database
without spaces, the memory required to store the calculated pairs is small. Presumably, in the captured packets, passwords have
a certain type: 12 characters, taken from 26 letters of the alphabet. The encrypted password 𝑑𝑑0 in the captured packet data set
is used to identify the associated password. To do this, first calculate 𝑒𝑒(𝑊𝑊(𝑑𝑑0)) to get the new encrypted password 𝑑𝑑1, then
calculate 𝑒𝑒(𝑊𝑊(𝑑𝑑1)) to get 𝑑𝑑2, and so on until the encrypted password starting with twenty 0 (𝑑𝑑𝑚𝑚) is displayed. The table is
then checked to see which source password, 𝑃𝑃0, the encrypted fm password is associated with. Based on 𝑃𝑃0, the password and
encrypted passwords 𝑒𝑒1, 𝑒𝑒2, … are calculated until the original encrypted password 𝑑𝑑0, denoted 𝑑𝑑𝑘𝑘, is generated. The password
that the hacker is looking for is the one that gave rise to 𝑑𝑑𝑘𝑘, i.e. (𝑊𝑊(𝑑𝑑𝑘𝑘 − 1), which is one step earlier in the chain of calculations.

The required computation time is what it takes to find the 𝑑𝑑𝑚𝑚 in the table plus the time it takes to compute the sequence
of encrypted passwords from the corresponding password (𝑒𝑒1, 𝑒𝑒2,… , 𝑒𝑒𝑘𝑘) which is about a million times less than the time it
takes to compute the table itself. Thus, performing a preliminary calculation and storing the results allows a hacker to get any
password with a known encrypted password in a reasonable amount of time. This process takes a few seconds.

The process of decrypting the password by the rainbow tables of the novel BTFAT is presented in expression (26):

𝑅𝑅𝑡𝑡 =

{

 𝐺𝐺0

𝑒𝑒
→𝑒𝑒(𝐺𝐺0)

𝑊𝑊
→ 𝐺𝐺1

𝑒𝑒
→𝑒𝑒(𝐺𝐺1)

𝑊𝑊
→ 𝐺𝐺2

𝑒𝑒
→…

𝑒𝑒
→𝑒𝑒(𝐺𝐺𝑛𝑛)

𝐹𝐹0
𝑒𝑒
→𝑒𝑒(𝐹𝐹0)

𝑊𝑊
→ 𝐺𝐺1

𝑒𝑒
→𝑒𝑒(𝐹𝐹1)

𝑊𝑊
→ 𝐹𝐹2

𝑒𝑒
→…

𝑒𝑒
→𝑒𝑒(𝐹𝐹𝑛𝑛) ………………………………… .

𝐽𝐽0
𝑒𝑒
→𝑒𝑒(𝐽𝐽0)

𝑊𝑊
→ 𝐺𝐺1

𝑒𝑒
→𝑒𝑒(𝐽𝐽1)

𝑊𝑊
→ 𝐽𝐽2

𝑒𝑒
→…

𝑒𝑒
→𝑒𝑒(𝐽𝐽𝑛𝑛)

 (49)

Where 𝑅𝑅𝑡𝑡: the process of decrypting the password by the rainbow tables of the BTFAT; 𝐺𝐺0, 𝐹𝐹0, 𝐽𝐽0: possible passwords;
𝑒𝑒(𝐺𝐺0), 𝑒𝑒(𝐹𝐹0), 𝑒𝑒(𝐽𝐽0): the encrypted passwords; 𝑊𝑊: a function to convert the encrypted password.

Corollary-3: A hacker can hack any wireless network by getting a handshake. Starting with the first stolen encrypted
password (𝐵𝐵𝑠𝑠), the hacker applies the functions 𝑊𝑊 and 𝑒𝑒 repeatedly, calculating a series of encrypted passwords and final
passwords, until he reaches the encrypted password with twenty 0 in front of it. The hacker then searches for this last encrypted
password in the table (encrypted password E) and identifies the corresponding password (password E).

Table 4 - Rainbow table

Password Q Encrypted password Q
Password W Encrypted password W
Password E Encrypted password E
Password R Encrypted password R

The hacker then applies the 𝑊𝑊 and 𝑒𝑒 functions again, starting with the identified password, continuing until one of the

received encrypted passwords in the chain matches the stolen encrypted password:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 𝐸𝐸 → 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑑𝑑 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 1 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 2 → 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑑𝑑 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 2
→ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 3… → ⋯𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 33 → 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑑𝑑 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 34 [𝑃𝑃 𝑚𝑚𝑃𝑃𝐸𝐸𝐸𝐸ℎ 𝐸𝐸𝑃𝑃 𝑒𝑒𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑑𝑑 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 𝐵𝐵𝑠𝑠]

Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 𝐸𝐸, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 1,2,3… ∶ intermediate and final password required for hacking Wi-Fi;

𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑑𝑑 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 1, 2, …: encrypted password located in the handshake.

International Journal of Information and Communication Technologies, №8 (2), December, 2021
31

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

An encrypted password that matches (Encrypted password 34) will mean that the previous password
(Password 33) from which it was obtained is associated with the stolen encrypted password. To set the first and
last columns of the rainbow table, you need to perform a lot of calculations. They store only the data in these
two columns, and by recalculating the chain, hackers can identify any password by its encrypted password
located in the handshake.

Experimental results
This section contains the proposed BTFAT. To demonstrate the advantages of choosing this tool for

calculating the values of such characteristics as reliability, efficiency, and time of user de-authorization during
hacking of a wireless network, these data were also calculated for three other tools (Reaver, Wifite, Wireshark).

Network hacking requires the following components, which are described in Table 5.

Table 5 - Components for hacking Wi-Fi
Components Version/The name of the system

Personal computer x64
Operation system Linux Kali 5.9.0
Wireless access point D-linkDIR-615
Resolution 1920x1080 px
Processor Intel(R) Core (TM) i7-8750H
Maker Acer
RAM 2048 MB
Video memory 16 MB
HARD Disk 39,9 GB (/dev/sda1)
CPU MHz 2208.002
Cash size 9216 KB

Based on the results, the following metrics are measured.
- Effectiveness of packet capture
- Client de-authorization time
- Reliability
- Processing performance of sent requests.
A. Effectiveness of Packet-capture
The effectiveness of using a particular method when hacking Wi-Fi is calculated by the equation:

The hacker then applies the 𝑊𝑊 and 𝑒𝑒 functions again, starting with the identified password,
continuing until one of the received encrypted passwords in the chain matches the stolen encrypted
password:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸 → 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2
→ 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 2 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 3 …
→ ⋯ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 33 → 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 34 [𝑃𝑃 𝑚𝑚𝑃𝑃𝐸𝐸𝐸𝐸ℎ 𝐸𝐸𝑃𝑃 𝑒𝑒𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃

𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐵𝐵𝑠𝑠
]

Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1,2,3 … ∶ intermediate and final password required for
hacking Wi-Fi; 𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 1, 2, …: encrypted password located in the handshake.

An encrypted password that matches (𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑃𝑃 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 34) will mean that the previous
password (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 33) from which it was obtained is associated with the stolen encrypted
password. To set the first and last columns of the rainbow table, you need to perform a lot of
calculations. They store only the data in these two columns, and by recalculating the chain, hackers
can identify any password by its encrypted password located in the handshake.

Experimental results
This section contains the proposed BTFAT. To demonstrate the advantages of choosing this

tool for calculating the values of such characteristics as reliability, efficiency, and time of user de-
authorization during hacking of a wireless network, these data were also calculated for three other
tools (Reaver, Wifite, Wireshark).

Network hacking requires the following components, which are described in Table 5.

Table 5 - Components for hacking Wi-Fi
Components Version/The name of the system

Personal computer x64
Operation system Linux Kali 5.9.0
Wireless access point D-linkDIR-615
Resolution 1920x1080 px
Processor Intel(R) Core (TM) i7-8750H
Maker Acer
RAM 2048 MB
Video memory 16 MB
HARD Disk 39,9 GB (/dev/sda1)
CPU MHz 2208.002
Cash size 9216 KB

Based on the results, the following metrics are measured.
- Effectiveness of packet capture
- Client de-authorization time
- Reliability
- Processing performance of sent requests.

A. Effectiveness of Packet-capture
The effectiveness of using a particular method when hacking Wi-Fi is calculated by the

equation: 𝐸𝐸= 𝑃𝑃
𝑇𝑇 × 100% (50) (50)

Where Е: the effectiveness of packet capture; Р: the number of packets captured; Т: the time taken for a
packet capture.

The data for calculating the packet capture effectiveness is given in Table 3 and Table 4. When calculating
the effectiveness, the number of captured packets is considered. Table 3 and Table 4 show the number of
packets captured by various tools within 50 seconds. The largest number of packets in a time equal to 50
seconds was captured by the BTFAT (48.5), the smallest number of packets – by Wifite (41). Figure 4 shows
the effectiveness of packet capture using the BTFAT, Reaver, Wifite, and Wireshark tools. Figure 4 shows that
BTFAT (97%) has the highest effectiveness. Figure 4 also shows that the effectiveness of the BTFAT increases
over time.

Where 𝐸𝐸: the effectiveness of packet capture; 𝑃𝑃: the number of packets captured; 𝑇𝑇: the time
taken for a packet capture.

The data for calculating the packet capture effectiveness is given in Table 3 and Table 4. When
calculating the effectiveness, the number of captured packets is considered. Table 3 and Table 4 show
the number of packets captured by various tools within 50 seconds. The largest number of packets in
a time equal to 50 seconds was captured by the BTFAT (48.5), the smallest number of packets – by
Wifite (41). Figure 4 shows the effectiveness of packet capture using the BTFAT, Reaver, Wifite,
and Wireshark tools. Figure 4 shows that BTFAT (97%) has the highest effectiveness. Figure 4 also
shows that the effectiveness of the BTFAT increases over time.

Figure 4 - The effectiveness of packet capture
B. Client de-authorization time
The client de-authorization time depends on the number of requests made by the hacker and the

responses received from the client, as well as the speed of sending requests. The de-authorization
time is calculated using the equation:

𝑡𝑡 = 𝑁𝑁𝑟𝑟 × 𝑁𝑁𝑎𝑎
𝑉𝑉𝑐𝑐

(51)

Where 𝑡𝑡: the client de-authorization time; 𝑁𝑁𝑟𝑟: the number of requests; 𝑁𝑁𝑎𝑎: the responses
received from the client; 𝑉𝑉𝑐𝑐: the speed of sending requests.

Data for calculating the de-authorization time are given in Table 5 and Table 6. Figure 5 shows
the client de-authorization time for each tool. If the speed of sending requests is the same for all tools,
then calculating the de-authorization time by the equation (51), it is noticeable that the de-
authorization time increases with the passage of time and the requests sending. Figure 5 shows that
the BTFAT sent 50 requests and the de-authorization time took 116.6 seconds. Thus, the BTFAT can
complete the authorization process in a shorter time compared to other tools, which contributes to
faster handshake establishment for password decryption.

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

110

Ef
fe

ct
iv

en
es

s

time (sec)

 BTFAT
 Reaver
 Wifite
 Wireshark

Figure 4 - The effectiveness of packet capture

International Journal of Information and Communication Technologies, №8 (2), December, 2021
32

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

B. Client de-authorization time
The client de-authorization time depends on the number of requests made by the hacker and the responses

received from the client, as well as the speed of sending requests. The de-authorization time is calculated using
the equation:

Where 𝐸𝐸: the effectiveness of packet capture; 𝑃𝑃: the number of packets captured; 𝑇𝑇: the time
taken for a packet capture.

The data for calculating the packet capture effectiveness is given in Table 3 and Table 4. When
calculating the effectiveness, the number of captured packets is considered. Table 3 and Table 4 show
the number of packets captured by various tools within 50 seconds. The largest number of packets in
a time equal to 50 seconds was captured by the BTFAT (48.5), the smallest number of packets – by
Wifite (41). Figure 4 shows the effectiveness of packet capture using the BTFAT, Reaver, Wifite,
and Wireshark tools. Figure 4 shows that BTFAT (97%) has the highest effectiveness. Figure 4 also
shows that the effectiveness of the BTFAT increases over time.

Figure 4 - The effectiveness of packet capture
B. Client de-authorization time
The client de-authorization time depends on the number of requests made by the hacker and the

responses received from the client, as well as the speed of sending requests. The de-authorization
time is calculated using the equation:

𝑡𝑡 = 𝑁𝑁𝑟𝑟 × 𝑁𝑁𝑎𝑎
𝑉𝑉𝑐𝑐

(51)

Where 𝑡𝑡: the client de-authorization time; 𝑁𝑁𝑟𝑟: the number of requests; 𝑁𝑁𝑎𝑎: the responses
received from the client; 𝑉𝑉𝑐𝑐: the speed of sending requests.

Data for calculating the de-authorization time are given in Table 5 and Table 6. Figure 5 shows
the client de-authorization time for each tool. If the speed of sending requests is the same for all tools,
then calculating the de-authorization time by the equation (51), it is noticeable that the de-
authorization time increases with the passage of time and the requests sending. Figure 5 shows that
the BTFAT sent 50 requests and the de-authorization time took 116.6 seconds. Thus, the BTFAT can
complete the authorization process in a shorter time compared to other tools, which contributes to
faster handshake establishment for password decryption.

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

110

Ef
fe

ct
iv

en
es

s

time (sec)

BTFAT
Reaver
Wifite
Wireshark

 (51)
Where t: the client de-authorization time; Nr: the number of requests; Nα: the responses received from the

client; Vc: the speed of sending requests.
Data for calculating the de-authorization time are given in Table 5 and Table 6. Figure 5 shows the client

de-authorization time for each tool. If the speed of sending requests is the same for all tools, then calculating
the de-authorization time by the equation (51), it is noticeable that the de-authorization time increases with
the passage of time and the requests sending. Figure 5 shows that the BTFAT sent 50 requests and the de-
authorization time took 116.6 seconds. Thus, the BTFAT can complete the authorization process in a shorter
time compared to other tools, which contributes to faster handshake establishment for password decryption.

0 5 10 15 20 25 30 35 40 45 50 55
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

C
lie

nt
 d

e-
au

th
or

iz
at

io
n

tim
e,

 s
ec

Number of requests

 BTFAT
 Reaver
 Wifite
 Wireshark

Figure 5 - Client de-authorization time
Figure 6 shows that for BTFAT, even with an increased number of requests, the pre-authorization time is

minimal compared to other tools.

0 10 20 30 40 50 60 70 80 90 100 110
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900

C
lie

nt
 d

e-
au

th
or

iz
at

io
n

tim
e,

 s
ec

Number of requests

 BTFAT
 Reaver
 Wifite
 Wireshark

Figure 6 - Client de-authorization time
Figure 7 shows the relationship between the number of requests sent to the user and the number of responses

received from the user. Figure 7 shows that the smallest number of responses received was accepted by the
BTFAT (6). This means that the BTFAT requires less resources and time to intercept the handshake, as fewer
requests are processed.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

R
es

po
ns

es
 re

ce
iv

ed
 fr

om
 th

e
cl

ie
nt

Number of requests

 BTFAT
 Reaver
 Wifite
 Wireshark

Figure 7 - Elements of the de-authorization process

Figure 5 - Client de-authorization time

Figure 6 shows that for BTFAT, even with an increased number of requests, the pre-
authorization time is minimal compared to other tools.

Figure 6 - Client de-authorization time

Figure 7 shows the relationship between the number of requests sent to the user and the number
of responses received from the user. Figure 7 shows that the smallest number of responses received
was accepted by the BTFAT (6). This means that the BTFAT requires less resources and time to
intercept the handshake, as fewer requests are processed.

0 5 10 15 20 25 30 35 40 45 50 55
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

C
lie

nt
 d

e-
au

th
or

iz
at

io
n

tim
e,

 s
ec

Number of requests

BTFAT
Reaver
Wifite
Wireshark

0 10 20 30 40 50 60 70 80 90 100 110
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900

C
lie

nt
 d

e-
au

th
or

iz
at

io
n

tim
e,

 s
ec

Number of requests

 BTFAT
 Reaver
 Wifite
 Wireshark

Figure 5 - Client de-authorization time

Figure 6 shows that for BTFAT, even with an increased number of requests, the pre-
authorization time is minimal compared to other tools.

Figure 6 - Client de-authorization time

Figure 7 shows the relationship between the number of requests sent to the user and the number
of responses received from the user. Figure 7 shows that the smallest number of responses received
was accepted by the BTFAT (6). This means that the BTFAT requires less resources and time to
intercept the handshake, as fewer requests are processed.

0 5 10 15 20 25 30 35 40 45 50 55
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

C
lie

nt
 d

e-
au

th
or

iz
at

io
n

tim
e,

 s
ec

Number of requests

 BTFAT
 Reaver
 Wifite
 Wireshark

0 10 20 30 40 50 60 70 80 90 100 110
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900

C
lie

nt
 d

e-
au

th
or

iz
at

io
n

tim
e,

 s
ec

Number of requests

BTFAT
Reaver
Wifite
Wireshark

Figure 7 - Elements of the de-authorization process

Figure 8 shows the relationship between user requests and responses. The duration of a network
hacker attack depends on the number of responses received as a result of requests sent by the hacker.
The fewer responses received from the client and the user are de-authorized, the faster the user
processes requests and the wireless network is hacked.

Figure 8 - Elements of the de-authorization process

During the de-authorization process, the time of this process depends on such elements as the
number of requests and responses, and the speed of sending requests. Figure 9 shows the correlation
between speed and time, as well as between the time and number of client responses. Figure 9 shows
that the correlation values in the upper graph are less scattered, which means a higher correlation. In
the lower graph, the values are more scattered, which means a high correlation. Table 9, showing the
correlation coefficient of each element of the de-authorization process, demonstrates a 92%
correlation between the time spent on client de-authorization and the number of responses received
as a result of requests. This means that the de-authorization time is highly dependent on the number
of responses received. The correlation between the speed of sent packets and the de-authorization
time is 53%, and an average noticeable relationship is formed. This means that the de-authorization
time is weakly dependent on the speed of sending packets.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

R
es

po
ns

es
 re

ce
iv

ed
 fr

om
 th

e
cl

ie
nt

Number of requests

 BTFAT
 Reaver
 Wifite
 Wireshark

0 10 20 30 40 50 60 70 80 90 100 110
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

R
es

po
ns

es
 re

ce
iv

ed
 fr

om
 th

e
cl

ie
nt

Number of requests

BTFAT
Reaver
Wifite
Wireshark

International Journal of Information and Communication Technologies, №8 (2), December, 2021
33

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

Figure 8 shows the relationship between user requests and responses. The duration of a network hacker
attack depends on the number of responses received as a result of requests sent by the hacker. The fewer
responses received from the client and the user are de-authorized, the faster the user processes requests and the
wireless network is hacked.

0 10 20 30 40 50 60 70 80 90 100 110
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

R
es

po
ns

es
 re

ce
iv

ed
 fr

om
 th

e
cl

ie
nt

Number of requests

 BTFAT
 Reaver
 Wifite
 Wireshark

Figure 8 - Elements of the de-authorization process
During the de-authorization process, the time of this process depends on such elements as the number of

requests and responses, and the speed of sending requests. Figure 9 shows the correlation between speed and
time, as well as between the time and number of client responses. Figure 9 shows that the correlation values in
the upper graph are less scattered, which means a higher correlation. In the lower graph, the values are more
scattered, which means a high correlation. Table 9, showing the correlation coefficient of each element of the
de-authorization process, demonstrates a 92% correlation between the time spent on client de-authorization
and the number of responses received as a result of requests. This means that the de-authorization time is
highly dependent on the number of responses received. The correlation between the speed of sent packets and
the de-authorization time is 53%, and an average noticeable relationship is formed. This means that the de-
authorization time is weakly dependent on the speed of sending packets.

8 10 12 14 16 18 20

3,0

3,5

4,0

4,5

5,0

5,5

6,0

8 10 12 14 16 18 20
2,2

2,3

2,4

2,5

2,6

2,7

2,8

2,9

3,0

3,1

 correlation

R
es

po
ns

es
 re

ce
iv

ed
 fr

om
 th

e
cl

ie
nt

Client de-authorization time, sec

 correlation

Sp
ee

d
of

 s
en

di
ng

 re
qu

es
ts

, M
B/

se
c

Client de-authorization time, sec

Figure 9 - Correlation dependence

Figure 7 - Elements of the de-authorization process

Figure 8 shows the relationship between user requests and responses. The duration of a network
hacker attack depends on the number of responses received as a result of requests sent by the hacker.
The fewer responses received from the client and the user are de-authorized, the faster the user
processes requests and the wireless network is hacked.

Figure 8 - Elements of the de-authorization process

During the de-authorization process, the time of this process depends on such elements as the
number of requests and responses, and the speed of sending requests. Figure 9 shows the correlation
between speed and time, as well as between the time and number of client responses. Figure 9 shows
that the correlation values in the upper graph are less scattered, which means a higher correlation. In
the lower graph, the values are more scattered, which means a high correlation. Table 9, showing the
correlation coefficient of each element of the de-authorization process, demonstrates a 92%
correlation between the time spent on client de-authorization and the number of responses received
as a result of requests. This means that the de-authorization time is highly dependent on the number
of responses received. The correlation between the speed of sent packets and the de-authorization
time is 53%, and an average noticeable relationship is formed. This means that the de-authorization
time is weakly dependent on the speed of sending packets.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

R
es

po
ns

es
 re

ce
iv

ed
 fr

om
 th

e
cl

ie
nt

Number of requests

BTFAT
Reaver
Wifite
Wireshark

0 10 20 30 40 50 60 70 80 90 100 110
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

R
es

po
ns

es
 re

ce
iv

ed
 fr

om
 th

e
cl

ie
nt

Number of requests

 BTFAT
 Reaver
 Wifite
 Wireshark

Figure 9 - Correlation dependence

C. Reliability
The reliability of Wi-Fi hacking is characterized by the probability of password decryption,

which is determined by the following equation (52):

𝑃𝑃𝑐𝑐(𝑡𝑡) = 𝑁𝑁0 − ∑ 𝑛𝑛𝑖𝑖
𝑁𝑁0

(52)

Where 𝑃𝑃𝑐𝑐(𝑡𝑡): reliability of Wi-Fi hacking; 𝑁𝑁0: the number of initially captured packets; ∑ 𝑛𝑛𝑖𝑖:
the total number of requests.

Figure 10 presents the percentage of reliability of the network hacking process for each tool.
Data for calculating the reliability of using each tool are shown in Table 10 and Table 11. Figure 10
shows that the BTFAT has the highest reliability (86%), and the Wifite tool has the lowest reliability
(66%). Also, Figure 8 reveals that over time, the reliability of packet capture using the BTFAT
remains higher than with other tools.

8 10 12 14 16 18 20

3,0

3,5

4,0

4,5

5,0

5,5

6,0

8 10 12 14 16 18 20
2,2

2,3

2,4

2,5

2,6

2,7

2,8

2,9

3,0

3,1

 correlation

R
es

po
ns

es
 re

ce
iv

ed
 fr

om
 th

e
cl

ie
nt

Client de-authorization time, sec

 correlation

Sp
ee

d
of

 s
en

di
ng

 re
qu

es
ts

, M
B/

se
c

Client de-authorization time, sec

International Journal of Information and Communication Technologies, №8 (2), December, 2021
34

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

C. Reliability
The reliability of Wi-Fi hacking is characterized by the probability of password decryption, which is

determined by the following equation (52):

Where : reliability of Wi-Fi hacking; : the number of initially captured packets; : the total
number of requests.

 Figure 10 presents the percentage of reliability of the network hacking process for each tool. Data for
calculating the reliability of using each tool are shown in Table 10 and Table 11. Figure 10 shows that the
BTFAT has the highest reliability (86%), and the Wifite tool has the lowest reliability (66%). Also, Figure 8
reveals that over time, the reliability of packet capture using the BTFAT remains higher than with other tools.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

R
el

ia
bi

lit
y,

 %

Number of captured packets

 BTFAT
 Reaver
 Wifite
 Wireshark

Figure 10 - Reliability of the network hacking process
D. Processing performance of sent requests
The processing performance of the requests sent to the user affects the time of the de-authorization process,

as well as the process of handshake interception. Therefore, this parameter affects the total time of Wi-Fi
hacking. The higher the performance, the faster a hacker can crack the Wi-Fi. The processing performance of
the requests sent to the user is calculated using the equation:

Where the processing performance of sent requests to the user; the number of processed responses;
 the channel capacity; the request processing time.
Figure 11 shows that the processing performance of requests sent by the BTFAT is stable compared to other

tools and is equal to 85%. Also, the BTFAT has the highest performance, which contributes to the fastest Wi-Fi
hacking. The data for calculating performance is described in Tables 12 and 13.

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

Pe
rfo

rm
an

ce
, %

Request processing time, sec

 BTFAT
 Reaver
 Wifite
 Wireshark

Figure 11 - The processing performance of the requests sent to the user

Discussion of results
The proposed BTFAT consists of three stages. The first stage is packet capture, the second is user de-

authorization, and the last is Wi-Fi Blockchain-Featured Hacking Process. The advantages of using BTFAT
is the use the features of Blockchain technology that capture the packets effectively, reduction of the user de-

C. Reliability
The reliability of Wi-Fi hacking is characterized by the probability of password decryption, which is determined by the

following equation (52):

𝑃𝑃𝑐𝑐(𝑡𝑡) = 𝑁𝑁0 − ∑ 𝑛𝑛𝑖𝑖
𝑁𝑁0

 (52)

Where 𝑃𝑃𝑐𝑐(𝑡𝑡): reliability of Wi-Fi hacking; 𝑁𝑁0: the number of initially captured packets; ∑ 𝑛𝑛𝑖𝑖: the total number of
requests.

 Figure 10 presents the percentage of reliability of the network hacking process for each tool. Data for calculating the
reliability of using each tool are shown in Table 10 and Table 11. Figure 10 shows that the BTFAT has the highest reliability
(86%), and the Wifite tool has the lowest reliability (66%). Also, Figure 8 reveals that over time, the reliability of packet capture
using the BTFAT remains higher than with other tools.

Figure 10 - Reliability of the network hacking process

D. Processing performance of sent requests
The processing performance of the requests sent to the user affects the time of the de-authorization process, as well as

the process of handshake interception. Therefore, this parameter affects the total time of Wi-Fi hacking. The higher the
performance, the faster a hacker can crack the Wi-Fi. The processing performance of the requests sent to the user is calculated
using the equation:

𝑃𝑃𝑝𝑝 = 𝛽𝛽 × 𝐶𝐶
𝜔𝜔 × 100% (53)

Where 𝑃𝑃𝑝𝑝: the processing performance of sent requests to the user; 𝛽𝛽: the number of processed responses; 𝐶𝐶: the channel
capacity; 𝜔𝜔: the request processing time.

Figure 11 shows that the processing performance of requests sent by the BTFAT is stable compared to other tools and is
equal to 85%. Also, the BTFAT has the highest performance, which contributes to the fastest Wi-Fi hacking. The data for
calculating performance is described in Tables 12 and 13.

Figure 11 - The processing performance of the requests sent to the user

Discussion of results
The proposed BTFAT consists of three stages. The first stage is packet capture, the second is user de-authorization,
and the last is Wi-Fi Blockchain-Featured Hacking Process. The advantages of using BTFAT is the use the
features of Blockchain technology that capture the packets effectively, reduction of the user de-

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
R

el
ia

bi
lit

y,
 %

Number of captured packets

 BTFAT
 Reaver
 Wifite
 Wireshark

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

an
ce

, %

Request processing time, sec

 BTFAT
 Reaver
 Wifite
 Wireshark

International Journal of Information and Communication Technologies, №8 (2), December, 2021
35

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

authorization, and the reliability. The packet capture effectiveness is 97%, which is higher than that of the other
tools. The user de-authorization time with the BTFAT is more effective as compared to other tools. This time is
minimal when compared with other state-of-the-art tools. Thus, it proves that the BTFAT tool takes less time to
perform de-authorization of the user, so the minimum amount of time is needed to intercept a handshake. The
reliability of hacking a wireless network with BTFAT is 86%, which is the highest indicator. Table 3 shows the
comparative analysis of the proposed BTFAT tool and other contending tools.

Another advantage of this tool is that BTFAT works with any wireless network adapters whose driver
supports the monitoring mode. Also, the advantage of this tool is its extensive functionality. In addition to
cracking WEP/WPA/WPA2 keys, BTFAT can decrypt intercepted traffic with a known key, analyze traffic,
create a virtual tunneling interface, create encrypted packets for injection, provide techniques for attacking
the client, remove WEP masking from PCAP files, store and manage lists of ESSIDs and passwords, calculate
paired master keys, and open access to the wireless network card from other computers. However, this method
of hacking Wi-Fi has disadvantages. The main disadvantages are the slow speed of password search and the
lack of tables with pre-calculated hashes for password selection.

Table 3 - Comparative analysis of the proposed BTFAT, Reaver, Wifite and Wireshark tools
Name of

tools
Effectiveness

of packet
capture

Client de-
authorization time

Responses
received from

the client

Responses
received from

the client

Reliability Processing
performance of
sent requests

55
Request

110
Request

55 Requests 110
Requests

Maximum
captured 50

packets

Request
processing 50

seconds
BTFAT 97%, 116.6 192 06 12 86% 85%
Reaver 87.4% 133.3 551.2 08 16 84% 59.5%
Wifite 74.3% 283.3 796 12 24 66% 47.2%

Wireshark 94.3% 200 552 9 18 76% 66.1%

Conclusion
This paper introduces a Blockchain-featured BTFAT for controlling the hacking of the wireless network.

It also provides a detailed description of the wireless network hacking process. The Wi-Fi hacking process
occurs in three phases. In the beginning, packets are captured by monitoring and saved to a file, then the user is
de-authorized, and the handshake is recorded in a previously saved file. The last phase consists of Blockchain
technology features, which are used for controlling the hacking process of the wireless network and decrypting
the password. The advantage of the proposed BTFAT is that the BTFAT can hack networks that use Blockchain
technology, given that networks with such technology have very high security. Another advantage is the speed
of using this method, its efficiency, and reliability.

The expressions have been used to calculate the values of efficiency, reliability, and user de-authorization
time, and a comparative analysis of several tools for hacking Wi-Fi was performed. The reliability of using the
BTFAT is 86%, efficiency - 97%, the request processing performance time is 85%. Furthermore, the time of
detecting the Wi-Fi-hacking is minimal compared to other existing state-of-the-art tools. These results show
that the proposed BTFAT is the best choice for Wi-Fi-hacking prevention. In the future, we will model the pen-
testing process with BTFAT for evaluating the wireless network security metrics.

REFERENCES
[1] Cisar, P., and S. Maravic Cisar. "Ethical hacking of wireless networks in kali Linux environment."

Annals of the Faculty of Engineering Hunedoara 16.3 (2018): 181-186.
[2] Astudillo, Karina. Wireless Hacking 101. Babelcube Inc., 2017.
[3] Karagiannis, Konstantinos. "Hacking Blockchain." (2017).
[4] Venkatesh, V. G., et al. "System architecture for blockchain based transparency of supply chain social

sustainability." Robotics and Computer-Integrated Manufacturing 63 (2020): 101896.
[5] Werbach, Kevin. The blockchain and the new architecture of trust. Mit Press, 2018.
[6] Sinha, Sanjib, Sanjib Sinha, and Karkal. Beginning Ethical Hacking with Kali Linux. Apress, 2018.
[7] Ansari, Juned Ahmed. Web penetration testing with Kali Linux. Packt Publishing Ltd, 2015.
[8] Guo, Rui. "Survey on WiFi infrastructure attacks." International Journal of Wireless and Mobile

Computing 16.2 (2019): 97-101.

International Journal of Information and Communication Technologies, №8 (2), December, 2021
36

АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ЖЕЛІЛЕР, КИБЕРҚАУІПСІЗДІК

[9] Pimple, Nishant, et al. "Wireless Security—An Approach Towards Secured Wi-Fi Connectivity." 2020
6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2020.

[10] Noshad, Zainib, Nadeem Javaid, and Muhammad Imran. Analyzing and securing data using data science
and blockchain in smart networks. Diss. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000,
Pakistan, 2019.

[11] Swedan, AbedAlqader, et al. "Detection and prevention of malicious cryptocurrency mining on internet-
connected devices." Proceedings of the 2nd International Conference on Future Networks and Distributed
Systems. 2018.

[12] Kabanov, P. A., and Mikhail Sergeevich Sukhodoev. "Overview of hacking tools and protection of
modern ICT devices." 14th International Forum on Strategic Technology (IFOST-2019), October 14-17, 2019,
Tomsk, Russia:[proceedings].—Tomsk, 2019.. 2019.

[13] Goyal, Piyush, and Anurag Goyal. "Comparative study of two most popular packet sniffing tools-
Tcpdump and Wireshark." 2017 9th International Conference on Computational Intelligence and Communication
Networks (CICN). IEEE, 2017.

[14] Astudillo, Karina. Wireless Hacking 101. Babelcube Inc., 2017.
[15] Vance, William. Linux for Hackers: A Comprehensive Beginners Guide to the World of Hacking using

Linux. joiningthedotstv, 2020.
[16] Таганов, П. А. "Исследование алгоритма атаки на беспроводную сеть Wi-Fi." Организатор

конференции. 2018.
[17] Parasram, Shiva VN, et al. Kali Linux 2018: Assuring Security by Penetration Testing: Unleash the full

potential of Kali Linux 2018, now with updated tools. Packt Publishing Ltd, 2018.
[18] Baloch, Rafay. Ethical hacking and penetration testing guide. CRC Press, 2017.
[19] Carranza, Aparicio, et al. "Automated Wireless Network Penetration Testing Using Wifite and

Reaver." Global Partnerships for Development and Engineering Education: Proceedings of the 15th LACCEI
International Multi-Conference for Engineering, Education and Technology, July 19-21, 2017, Boca Raton, FL,
United States. Latin American and Caribbean Consortium of Engineering Institutions, 2017.

[20] Carranza, Aparicio, et al. "Automated Wireless Network Penetration Testing Using Wifite and
Reaver." Global Partnerships for Development and Engineering Education: Proceedings of the 15th LACCEI
International Multi-Conference for Engineering, Education and Technology, July 19-21, 2017, Boca Raton, FL,
United States. Latin American and Caribbean Consortium of Engineering Institutions, 2017.

[21] Martin, Alexander, Basiru Mohammed, and Rajkumar Ramadhin. "WEP VS WPA2 Encryptions."
(2019).

[22] Alassouli, Hidaia Mahmood. Hacking of Computer Networks. Dr. Hidaia Mahmood Alassouli, 2020.
[23] Al Neyadi, Eiman, et al. "Discovering Public Wi-Fi Vulnerabilities Using Raspberry pi and Kali Linux."

2020 12th Annual Undergraduate Research Conference on Applied Computing (URC). IEEE, 2020.
[24] Pimple, Nishant, Tejashree Salunke, Utkarsha Pawar, and Janhavi Sangoi. "Wireless Security—An

Approach Towards Secured Wi-Fi Connectivity." In 2020 6th International Conference on Advanced Computing
and Communication Systems (ICACCS), pp. 872-876. IEEE, 2020.

[25] Pandikumar, T., and Mohammed Ali Yesuf. "Wi-Fi Security and Test Bed Implementation for WEP and
WPA Cracking." International Journal of Engineering Science 13571 (2017).

[26] Sharma, Himanshu. Kali Linux-An Ethical Hacker's Cookbook: Practical recipes that combine
strategies, attacks, and tools for advanced penetration testing. Packt Publishing Ltd, 2019.

[27] Bullock, Jessey, and Jeff T. Parker. Wireshark for Security Professionals: Using Wireshark and the
Metasploit Framework. John Wiley & Sons, 2017.

[28] Li, Lei, Zhigang Li, Hossain Shahriar, Rebecca Rutherfoord, Svetana Peltsverger, and Dawn Tatum.
"Ethical Hacking: Network Security and Penetration Testing." (2018).

[29] Sinha, Sanjib. "Hashes and Passwords." Beginning Ethical Hacking with Kali Linux. Apress, Berkeley,
CA, 2018. 323-345.

[30] Santo Orcero, David. Kali Linux. Grupo Editorial RA-MA, 2018.
[31] Sinha, Sanjib. "MAC Address." Beginning Ethical Hacking with Python. Apress, Berkeley, CA, 2017.

191-194.

International Journal of Information and Communication Technologies, №8 (2), December, 2021
37

ИНФОКОММУНИКАЦИОННЫЕ СЕТИ И КИБЕРБЕЗОПАСНОСТЬ

Разак А., Әділ А.Ж., Аманжолова С.Т.
Блокчейн технологиясына негізделген Wi-Fi хакерін анықтаудың жаңа құралы

Аңдатпа. Wi-Fi бизнес, білім беру, өнеркәсіп және т.б. көптеген салаларда маңызды рөл атқарады,
екінші жағынан, Wi-Fi осалдықтары пайдаланушылардың мәліметтерінің құпиялылығына зиян келтіреді,
егер осалдықтар дұрыс өңделмесе. Кейбір хакерлер бұзу процесіне әкелетін Wi-Fi осалдығын пайдалану
үшін Linux құралын пайдаланады. Бұл мақалада Wi-Fi желісінің қауіпсіздігін жақсарту үшін Blockchain
Technology-Featured Novel Air-Cracking tool (BTFAT) ұсынылған. Құрал құнды функциялардан тұрады
(мысалы, бақылау, сканерлеу, бұзу және тестілеу). Бұл функциялар желінің осалдықтарын анықтауға
көмектеседі, BTFAT С тілінде бағдарламаланған. Эксперимент нәтижелеріне сүйене отырып, BTFAT
басқа қолданыстағы әдістермен салыстырғанда жоғары өнімділікті қамтамасыз етеді.

Кілт сөздер: Wi-Fi, осалдық, BTFAT, құпиялылық, сенімділік, тестілеу, Blockchain технологиясы.

Разак А., Әділ А.Ж., Аманжолова С.Т.
Новый инструмент для обнаружения взлома Wi-Fi на основе технологии блокчейн

Аннотация. Wi-Fi играет важную роль во многих областях, таких как бизнес, образование,
промышленность и т. д. С другой стороны, уязвимости Wi-Fi наносят ущерб конфиденциальности
данных пользователей, если уязвимости не обрабатываются должным образом. Некоторые хакеры
используют инструмент Linux для использования уязвимости Wi-Fi, которая приводит к процессу взлома.
В этой статье представлен новый инструмент Blockchain Technology-Featured Novel Air-Cracking tool
(BTFAT) для улучшения безопасности сети Wi-Fi. Инструмент состоит из ценных функций (например,
мониторинг, сканирование, взлом и тестирование). Эти функции помогают обнаружить уязвимости
сети, запрограммирован на языке C. Основываясь на результатах эксперимента, BTFAT обеспечивает
более высокую производительность по сравнению с другими существующими методами.

Ключевые слова: Wi-Fi, уязвимость, BTFAT, конфиденциальность, надежность, тестирование,
технология блокчейн.

Авторлар туралы мәлімет:
Абдул Разак, «Киберқауіпсіздік» кафедрасының профессоры, Халықаралық ақпараттық

технологиялар университеті.
Әділ Алтынай Жанарбекқызы, «Компьютерлік инженерия» кафедрасының магистранты,

Халықаралық ақпараттық технологиялар университеті.
Аманжолова Сауле Токсановна, «Киберқауіпсіздік» кафедрасының меңгерушісі, Халықаралық

ақпараттық технологиялар университеті.
Валиев Бахытжан Бауржанович, «Компьютерлік инженерия» кафедрасының магистранты,

Халықаралық ақпараттық технологиялар университеті.

Сведения об авторах:
Абдул Разак, профессор кафедры «Кибербезопасность», Международный университет

информационных технологий.
Әділ Алтынай Жанарбекқызы, магистрант кафедры «Компьютерная инженерия», Международный

университет информационных технологий.
Аманжолова Сауле Токсановна, заведующая кафедрой «Кибербезопасность», Международный

университет информационных технологий.
Валиев Бахытжан Бауржанович, магистрант кафедры «Компьютерная инженерия», Международный

университет информационных технологий.

About the authors:
Razaque A., Professor, Department of Cybersecurity, International Information Technology University.
Adil A.Zh., Master student, Department of Computer Engineering, International Information Technology

University.
Amanzholova S. T., Head of the Department of Cybersecurity, International Information Technology

University.
Valiyev B.B., Master student, Department of Computer Engineering, International Information Technology

University.

INTERNATIONAL JOURNAL OF INFORMATION AND
COMMUNICATION TECHNOLOGIES

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ИНФОРМАЦИОННЫХ И
КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

ХАЛЫҚАРАЛЫҚ АҚПАРАТТЫҚ ЖӘНЕ
КОММУНИКАЦИЯЛЫҚ ТЕХНОЛОГИЯЛАР ЖУРНАЛЫ

Ответственный за выпуск Есбергенов Досым Бектенович

Редакторы Медведев Евгений Юрьевич

Компьютерная верстка
и дизайн Жадыранова Гульнур Даутбековна

Редакция журнала не несет ответственности за
недостоверные сведения в статье и

неточную информацию по цитируемой литературе

Подписано в печать 15.12.2021 г.
Тираж 500 экз. Формат 60x84 1/16. Бумага тип.

Уч.-изд.л. 6.5. Заказ №170

Издание Международный университет информационных технологий
Издательский центр КБТУ, Алматы, ул. Толе би, 59

