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Abstract. This paper presents a comprehensive comparison of TF-IDF, word,
and multilingual sentence embeddings for automatic duplicate detection in Kazakh
texts. Experiments use the KazakhTextDuplicates dataset with labels for exact,
paraphrase, contextual, and partial duplicates. All models were evaluated within a
unified setup featuring standardized preprocessing, L2-normalized vectors, and
validation-based threshold tuning. The Word2Vec model with TF-IDF weighting
achieved the highest performance (F1 = 0.996; ROC-AUC = 0.9999; PR-AUC =
0.9999). The TF-IDF (1-3-grams) method remained competitive for exact and
partial overlaps (PR-AUC = 0.932; ROC-AUC = 0.775), while FastText provided the
best recall (R = 0.99) at moderate precision. Among multilingual models, BGE-m3
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and Snowflake Arctic achieved the best PR-AUC (=0.614). In retrieval, the BM25
followed by dense re-ranking pipeline produced a small but consistent improvement
over dense-only search (Recall@10: +0.04—0.12 pp; nDCG@10: +0.10-0.13 pp),
confirming the effectiveness of combining lexical and semantic features for duplicate
detection in morphologically rich, low-resource languages such as Kazakh.

Keywords: duplicate detection; Kazakh language; TF-IDF; word embeddings;
sentence embeddings; semantic similarity; BM25; dense retrieval; hybrid reranking;
low-resource NLP
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AHHOTanusi. Makanaaa Ka3ak TUTIHJET1 MOTIH JTyOJMKaTTapblH aBTOMATTHI
typae anbikray yurH TF-IDF, ce3nmik skoHe xenTinmi ceijeM SMOEITUHTTEpI Ke-
meHAl Typae calbICThIphUIAbl. DkcriepuMentTep KazakhTextDuplicates nepekrep
KUHAFBIHJIA JKYPTi3UIli, MyHJa JKYITap «HAKThI», «mapadpas», «KOHTEKCTIK»
KOHE «imIiHapa» AyOauKarT peTiHjae TaHOalaHraH. bapiblk Mojaenbaep OipbIHFal
HKCIIEPUMEHTTIK OpTaja OaranaH[pl: CTaHAAPTTAIFaH aljblH ana eHjey, L2-Hop-
MajlaHFaH BEKTOpJIap JKOHE BallMJaIlvs apKbpUIbl meK MoHiH Oamrtay. TF-IDF-nen
canmakranran Word2Vec Mozem eH skorapbl HoTmxkenepre sxerti (F1 = 0.996;
ROC-AUC = 0.9999; PR-AUC = 0.9999). TF-IDF (1-3-rpamMma) ofici HaKThI K9HE
imriHapa coiikectikrep yurin tuimai 6omael (PR-AUC = 0.932; ROC-AUC = 0.775),
an FastText xorapsr TonbIKTHIK (R = 0.99) kepcerti. KenTinmi Moaenbaep apacbiHaa
BGE-m3 xone Snowflake Arctic PR-AUC OGoiibiaima y3zik HoTHREepre (<0.614)
xeTTi. [31ey MmingeTinae BM25 jxoHe KeHiHT1 THIFbI3 KailiTa paHXUPJIEY TOCUII THIFbI3
13/IeyMEH caJbICThIpFaHIa a3 Oosca na TypakThl ociM kepcerti (Recall@10: +0.04—
0.12 1.6.; nDCG@10: +0.10-0.13 11.6.), OYJT JIEKCUKAJIBIK JKOHE CEMaHTHKAJIBIK OeJI-
rijepai OIpiKTIpyIiH THIMAUTITIH TS I

Tyiiin ce3aep: nyonmukarTapasl anpikTay; Ka3ak tim; TF-IDF; ce3nik amben-
JUHTTED; COUIIEMIIK IMOCTMHTTEP; CEMaHTHKAJBIK YKCACThIK; BM25; THIFBI3 137y
(dense retrieval); THOpUATI KaliTa paHXHUPIILY; PECypChI MeKTey: Tuiaep yuria NLP
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AHHoTanus. B cTathe nmpeacTaBieH BCECTOPOHHUN CPaBHUTENbHBIN aHAU3
mMeTonoB TF-IDF, cioBapHBIX MU MHOTOSI3BIYHBIX SMOEIIMHTOB TPEIIOKCHUN IS
aBTOMAaTUYECKOTO OOHapyXeHHs TyONHMKaTOB B Ka3aXCKHUX TEKCTaX. DKCIEpUMEH-
ThI ipoBesieHbl Ha Aaracere KazakhTextDuplicates, BkirouarorieM mapsl ¢ METKaMH
«TOYHBIIY, «Tapadpas», «KKOHTEKCTyalIbHBII» U «9acTUYHBINY TyOnukar. Bce mone-
JIM OLIGHWBAJUCh B €IUHON SKCIIEPUMEHTAILHON cXeMe ¢ YHU(DUIIMPOBAHHOHN Tpe-
no0paboTkoii, L2-HOpMUPOBAHHBIMU BEKTOPHBIMH MPEJCTABICHUSIMHA U MOJ00POM
nopora 1o BanuaanonHou Beioopke. Monens Word2Vec ¢ TF-IDF-B3pemmBanuem
nokazana Hawryumue pesyisrarsl (F1 = 0.996; ROC-AUC = 0.9999; PR-AUC =
0.9999). Meton TF-IDF (1-3-rpamMMbl) MpOIEMOHCTPUPOBAII BBICOKYIO TOYHOCTH
JUTSL TOYHBIX 1 9acTHYHBIX coBranenuid (PR-AUC =0.932; ROC-AUC = 0.775), Tor-
na kak FastText obecneunn makcumaibHyto moHOTY (R = 0.99) mpu ymepeHHOM
ToyHOCTU. Cpenr MHOTOSI3bIUHBIX Mojeneil pydmue nokazarenn PR-AUC (=0.614)
nonyueHsl 11 BGE-m3 u Snowflake Arctic. B 3agadue noucka qy0nukaToB ruOpui-
Has cxemMa BM25 ¢ nmocnenyronym mioTHBIM NepepaHkupoBaHUEM oOecreymnia He-
00JIBI110#1, HO CTAOUITBFHBIN IPUPOCT 110 CPABHEHUIO C TIOTHBIM TonckoM (Recall@10:
+0.04-0.12 n..; nDCG@10: +0.10-0.13 m.1.), yto moaTBep:xaaeT 3hHEeKTUBHOCTD
COYETaHMSI IEKCHYECKUX M CEeMAHTUYECKUX MPU3HAKOB Ui MOP(POIOTHUECKH CIIOXK-
HBIX, HU3KOPECYPCHBIX SI3BIKOB.

KioueBble cjioBa: oOHapyXeHHE TyONHMKAaToB;, Ka3aXCKWil s3bIK; TF-
IDF; sM0enauuru cioB; SMOEIIUHTH TPEIVIOKEHUN; CEeMaHTHYECKOE CXOJCTBO;
BM25; mnotHeiit mouck (dense retrieval); ruOpuanbiii mepepanxupuar; NLP s
HU3KOPECYPCHBIX SI3BIKOB
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KongaukT mHTepecoB: aBTOPHI 3asBISAIOT 00 OTCYTCTBUU KOH(IIMKTA
HUHTEPECOB.

Introduction

The rapid expansion of digital text corpora has intensified the demand
for effective tools in information retrieval, plagiarism detection, and large-scale
document management. A fundamental challenge in this area is duplicate detection,
which refers to identifying exact or near-exact repetitions of text fragments across
collections. While this task has been extensively studied for high-resource languages
such as English, Russian, and Chinese (Wang et al., 2020; Li et al., 2021), there
remains a considerable gap for low-resource languages, including Kazakh. Kazakh
poses unique challenges for duplicate detection due to its agglutinative morphology,
rich inflection, and free word order (Mussiraliyeva et al., 2024). Small variations
in affixes or syntax often alter surface forms without affecting semantic meaning,
complicating the design of robust detection systems.

Traditional statistical approaches, particularly term frequency—inverse
document frequency (TF-IDF), have proven effective for identifying near-exact
duplicates but struggle with paraphrased or contextually similar fragments (Cheng
et al.,, 2020). Advances in neural embeddings have significantly expanded the
scope of text similarity modeling. Word embeddings such as FastText can capture
subword information and morphological patterns, which is especially beneficial
for agglutinative languages (Bojanowski et al., 2017). Building upon this, sentence
embeddings trained on large multilingual corpora (e.g., LaBSE (Feng et al., 2020),
E5 (Wang et al., 2024), BGE (Chen et al., 2024), GTE/mGTE (Zhang et al., 2024),
Snowflake Arctic (Yu et al., 2024), and Alibaba GTE) enable robust comparison
of entire sentences or paragraphs, encoding both syntactic and semantic similarity.
These models have recently achieved strong performance in multilingual semantic
similarity and retrieval tasks (Xu et al., 2025; Mansurova et al., 2024).

Despite these advances, Kazakh remains underrepresented in large-scale
pretraining datasets, and the applicability of embedding-based approaches to duplicate
detection in Kazakh has not been systematically investigated. Prior work in Kazakh
NLP has focused mainly on morphological analysis, corpus construction, and part-
of-speech tagging (Akhmed-Zaki et al., 2021; Mansurova & Rakhimova, 2025), with
only limited exploration of semantic similarity or duplicate detection. To the best of
our knowledge, no comparative study has benchmarked statistical, word-level, and
sentence-level representations on a dedicated Kazakh duplicate detection dataset.

This study addresses this gap by conducting a comparative evaluation of TF-
IDF, word embeddings, and sentence embeddings for duplicate detection in Kazakh
texts. We employ the KazakhTextDuplicates dataset (Tleubayeva, 2025), which
includes labeled examples across categories such as exact duplicates, paraphrases,
contextual duplicates, and partial overlaps. Our research is guided by the following
questions:
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1.Which representation methods provide the highest accuracy for duplicate
detection in Kazakh texts?

2. How robust are these methods to preprocessing and parameter variations?

3.Does a hybrid re-rank strategy improve retrieval-oriented recall compared
to standalone methods?

Based on prior findings, we formulate the following hypotheses:

HI1: Sentence embeddings will significantly outperform TF-IDF and word
embeddings on paraphrased and contextual duplicates, as they capture semantic
equivalence beyond surface similarity (Feng et al., 2020; Wang et al., 2024; Chen et
al., 2024; Yu et al., 2024; Zhang et al., 2024).

H2: Character n-gram TF-IDF will remain competitive on exact and partial
duplicates, where surface overlap dominates, even if its performance degrades on
semantic cases (Cheng et al., 2020; Bojanowski et al., 2017).

H3: A hybrid BM25 followed by dense re-ranking strategy will achieve higher
Recall@k than standalone BM25 or dense models, providing a balanced approach to
both lexical and semantic similarity (Xu et al., 2025; Mansurova et al., 2024).

By systematically evaluating these approaches, this paper contributes to
the development of duplicate detection systems for Kazakh and provides insights
applicable to other morphologically rich, low-resource languages.

Materials and methods

Dataset and Preprocessing

We employ the publicly available KazakhTextDuplicates dataset (Tleubayeva,
2025), created specifically for duplicate detection in Kazakh. The corpus consists of
pairs of text fragments annotated as duplicate or non-duplicate, with fine-grained
duplicate categories that include exact, paraphrase, contextual, and partial overlaps.
This label design enables separate analysis of surface-level and semantic similarity
cases.

For fair comparison, we split the data into train/validation/test=70%/10%/20%
using stratified sampling by duplicate type, preserving the proportion of each category
across subsets. Stratification is especially important to maintain balanced coverage of
both trivial exact matches and more challenging paraphrased/contextual examples.

For the word-embedding baselines reported in this paper, we use an operational
subset stored at kk pairs_with nondup.csv, derived from the original dataset. Each
record contains the source text A (content), the modified text B (modified content),
and a label type duplicate € {exact, paraphrase, partial, nondup}. In this subset,
contextual duplicates from the source corpus are not included, to keep a consistent set
of positive types for per-type F1 versus the non-duplicate class used as the negative
reference.

Given the agglutinative morphology of Kazakh, preprocessing was crucial for
improving model robustness. The following steps were applied consistently across
all methods:

1. Text normalization: lowercasing and Unicode normalization.
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2. Stop-word removal: using a curated list of Kazakh stop-words.

3. Lemmatization/Stemming: leveraging available Kazakh morphological
analyzers to reduce words to canonical forms.

4. Segmentation: texts were segmented into sentences or short paragraphs to
form candidate fragments for comparison.

This uniform preprocessing ensured comparability between statistical, word-
level, and sentence-level approaches.

Representation Methods

This study employed three main approaches to text representation: the
statistical TF-IDF method, distributed word embeddings, and sentence embeddings
(Table 1). Each of these techniques was implemented and tested within the task of
duplicate detection in a corpus of Kazakh texts.

The TF-IDF (term frequency—inverse document frequency) method was
used to construct vector representations of text fragments based on term frequency
distributions. Several configurations were tested, including unigram, bigram, and
trigram models, as well as character-level n-grams (char_wb) ranging from three to
six characters. The latter was particularly relevant for Kazakh, a morphologically
rich language with complex affixation. To improve representation quality, frequency
thresholds were applied: extremely rare and overly frequent terms were excluded
using min_df and max_df parameters. This setup enabled a direct comparison
between lexical and character-based features, especially in detecting exact and partial
duplicates (Li et al., 2022; Bakiyev, 2022).

Distributed ~ word  representations were built  using  pre-
trained FastText and Word2Vec models adapted for multilingual and Kazakh
corpora. Each word was mapped into a vector space, and fragment-level vectors were
obtained by aggregating individual word vectors. Several aggregation strategies were
considered: simple averaging, TF-IDF weighted averaging to highlight informative
terms, and max pooling as an alternative baseline. These methods provided an
intermediate level of representation between surface-level statistical features and
context-sensitive sentence-level embeddings (Biloshchytska et al., 2025; Ayazbayev
etal., 2023).

To capture semantic and contextual information at the sentence or paragraph
level, several modern multilingual encoders from Hugging Face were evaluated.
Specifically, the models included LaBSE (Feng et al., 2020), intfloat/multilingual-e5-
base (Wang et al., 2024), BAAI/bge-m3 (Chen et al., 2024), Snowflake Arctic (Yu et
al., 2024), and Alibaba GTE/mGTE (Zhang et al., 2024). Each fragment was mapped
to a single vector, which was subsequently L2-normalized to ensure consistency in
similarity computation. Where appropriate, dimensionality reduction was applied
to standardize the representations. These models offered a more robust means of
identifying paraphrased and contextual duplicates compared to purely statistical
approaches.
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Table 1. Summary of Methods and Hypotheses Tested.

Method Representative Models / | Target Related Expected Role in Results
Group Settings Duplicate Hypothesis
Types
TF-IDF Word n-grams (1-3), Exact H2 Strong baseline for surface
min_df=3-5, max_df= | duplicates, similarity; char wb expected
0.85-0.95; Partial to remain competitive on near-
overlaps exact cases
char_wb n-grams (3—6)
Word FastText, Word2 Vec; Partial (bridging Better than TF-IDF for
Embeddings | pooling strategies: mean, | overlaps, some | case morphologically rich
TF-IDF-weighted, max paraphrases between fragments; less robust than
HI1 and sentence embeddings
H2)
Sentence LaBSE, multilingual-E5, | Paraphrases, H1 Expected to outperform TF-
Embeddings | BGE-m3, Snowflake Contextual IDF/WordEmb on semantic
Arctic, GTE duplicates similarity tasks
Hybrid BM25 — Dense rerank All categories | H3 Expected to improve
Retrieval (cosine similarity on (retrieval Recall@k compared to
embeddings) scenario) standalone BM25 or dense
retrieval

Evaluation Metrics

All sentence vectors are L2-normalized prior to similarity computation.
The primary similarity measure is cosine similarity; for robustness, we additionally
evaluate using Euclidean and Manhattan distances.

When using distances, either (1) convert them to a “pseudo-similarity” s=1—d,
or (i1) tune the threshold directly in the distance scale over a meaningful range. On
the validation split, the decision threshold 7 is selected over a uniform grid (for co-
sine, 1€[0.00,0.99] with step 0.01). The optimal threshold t* is determined by maxi-
mizing the F1-score:

o
T' = argmax F, (1) 0

where F1(t) denotes the F1-score computed at a given threshold 7.

To rigorously evaluate the performance of the duplicate detection methods, we
employed both classification-oriented metrics and ranking-oriented metrics. These
measures were chosen to capture complementary aspects of model performance:
precision of duplicate detection, ability to retrieve all duplicates, robustness across
thresholds, and performance on imbalanced data.

Precision quantifies the proportion of text pairs predicted as duplicates that are

actually correct. Formally:
TP
" TB+FP

(2)

where TP is the number of true positives (correctly identified duplicates), and
FP is the number of false positives (non-duplicates misclassified as duplicates).
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We use precision because in real-world scenarios (e.g., plagiarism detection or
document management), false alarms can undermine trust in the system.
Recall measures the proportion of actual duplicates that were successfully

retrieved by the model:
TP

TE+FN (3)

where FN denotes false negatives (missed duplicates).

Recall is critical in our experiment because missing true duplicates reduces
the effectiveness of applications such as information retrieval and knowledge dedu-
plication in Kazakh corpora.

The F1-score balances precision and recall by computing their harmonic mean:

— 5. ER
F1=2 P+R 4)

This metric is particularly suitable for our task, as it penalizes extreme trade-
offs (e.g., high recall but very low precision). It provides a single score to compare
methods under varying thresholds.

The area under the Receiver Operating Characteristic curve (ROC-AUC)
evaluates the model’s ability to discriminate between duplicates and non-duplicates
across different thresholds:

ROC — AUC = f:TPR(FPRj dFPR )

where
TPR=—=_ FPR=—
TE+FN FR+TN (6)

ROC-AUC is included for completeness as a widely recognized discrimina-
tion measure, though it may be less informative under strong class imbalance.
The area under the Precision—Recall curve (PR-AUC) is defined as:

PR — AUC = [ P(R) dR o

Unlike ROC-AUC, PR-AUC is more sensitive to imbalanced datasets. Since
duplicate pairs are much rarer than non-duplicates in Kazakh corpora, PR-AUC pro-
vides a more realistic estimate of performance in practical scenarios.

Cosine similarity was used as the primary distance metric, as it is scale-invari-

ant and robust to differences in vector magnitude:
Xy

<l 151 (8)
For robustness testing, Euclidean and Manhattan distances were also includ-

CosineSim(x,y) =

ed:

f =
dEuc!idamz (foj = 'IE:z:l[:xi - }Fij_ d'r:l'n:-:hnrrm: [_’}(’_‘_I,i"] = Z;!:j_lxi — ¥

i
9
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Testing multiple distance functions ensured that results did not depend solely
on a single similarity measure.

Results and discussion

In this experiment, models based on TF-IDF representations were evaluated
using cosine similarity and L2 normalization of vectors. Two types of feature repre-
sentations were considered: word n-grams and symbolic n-grams within the boundar-
ies of words. The range of n-grams (from unigrams to trigrams), as well as minimum
and maximum frequency thresholds, were varied for word models, which allowed
six configurations to be formed. Symbolic models were used as control models and
included four configurations with n-gram ranges from three to six characters.

The classification threshold was selected on a validation dataset using the grid
search method in order to maximize the F1 metric. In all configurations, the optimal
value was equal to t* = 0. During testing, this resulted in completeness (Recall) = 1.0
and accuracy (Precision) = 0.75, which roughly corresponds to the a priori propor-
tion of the positive class in the sample. Consequently, the final value of F1 (=0.859)
reflected the class imbalance to a greater extent than the actual ability of the model
to distinguish duplicates. This highlights the limitations of threshold metrics and the
need to use quality rating measures such as ROC-AUC and PR-AUC.

As shown in Table 2, the best results were achieved when using word n-grams
in the range (1, 3): PR-AUC = 0.932 and ROC-AUC = 0.775. The configuration
with bigrams (1, 2) showed comparable, but slightly lower results (PR-AUC = 0.930,
ROC-AUC = 0.767). At the same time, the model based only on unigrams showed
a sharp decrease in quality (PR-AUC < 0.625, ROC-AUC = 0.205), which confirms
the insufficiency of unigrams to reflect the context and morphological dependencies
in the Kazakh language.

Control experiments with symbolic n-grams showed significantly worse re-
sults (PR-AUC = 0.625, ROC-AUC = 0.21), which indicates that such features, lim-
ited by word boundaries, are not able to effectively model interword morphological
and paraphrased structures characteristic of the Kazakh language.

Table 2. Comparison of TF-IDF configurations during validation and test

Method | N-gram | min_ | max_df F1 Precision | Recall | ROC- PR- Comment

(Analyzer) df (test) AUC AUC

TF-IDF (1,2) 3-5 |0.85-0.95]0.859 |0.75 1.00 0.767 0.930 | Stable result,

(word) optimal for
near-exact
duplicates

TF-IDF (1,3) 3-5 |0.85-0.95]0.859 |0.75 1.00 0.775 0.932 | Best

(word) combination
in terms of
PR-AUC
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TF-IDF (1, 3-5 10.85-0.95|0.859 |0.75 1.00 0.205 0.624 | Inferior
(word) performance
in ROC/PR-
AUC

TF-IDF (3-6, 3-5 10.85-0.95(0.859 |0.75 1.00 0.210 0.625 | Although F1
(char_wb) | 4-6) is equal, the
curve-based
metrics are
weak

ROC curve (best: word (1, 3))

1.0

0.8 A

0.6 1

0.4 1

True Positive Rate

0.2

0.0 A

0.0 0.2 0.4 06 0.8 1.0
False Positive Rate

Fig.1. Receiver Operating Characteristic (ROC) curve for TF-IDF models

PR curve (best: word (1, 3))

S
©
<}

Precision

o
=]
5

0.75 1

0.0 0.2 0.4 06 0.8 10
Recall

Fig.2. Precision—Recall (PR) curve for TF-IDF models

As shown in Figure 1, the ROC curves clearly demonstrate that configuration
(1, 3) provides the largest area under the curve, which confirms its excellent
recognition ability. Similarly, the curves of accuracy versus memorization level in
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Figure 2 show that this model consistently maintains higher accuracy over a wide
range of memorization levels, indicating stable ranking even with class imbalances.

Taken together, these results confirm that TF-IDF’s word-based models
provide a reliable and interpretable framework for detecting duplicates in Kazakh.
The configuration (1, 3) with min_df= {3, 5} and max_df~= {0.85, 0.95} provides the
most balanced balance between accuracy and recall (PR-AUC = 0.932, ROC-AUC
~ 0.775). Therefore, the use of T = 0 in practical applications is not recommended.
Instead, accuracy should be used when choosing a threshold value — for example,
by optimizing FB3 at f < 1 — or score calibration methods such as the Platt scale or
isotonic regression should be used to increase decision stability.

For future work, it is recommended to explore hybrid function schemes that
combine word- and character-level representations without the “wb” constraint,
as well as integrate BM25’s repeat ranking and dense embed pipelines to improve
overall search and classification reliability.

At this stage, we evaluated static distributed word embeddings trained on
Kazakh. We used pre-trained 300-dimensional vectors from FastText (cc.kk.300.
bin) and Word2Vec (cc.kk.300.vec). Sentence vectors were obtained by either simple
averaging or TF-IDF—-weighted averaging of token embeddings. All vectors were
L2-normalized, and pairwise similarity was computed with cosine similarity. The
decision threshold T was tuned on the validation set to maximize F1, and evaluation
was performed on the test set using classification (Precision, Recall, F1) and ranking
metrics (ROC-AUC, PR-AUC), together with class-wise F1 for different duplicate
types.

As shown in Table 3, FastText with 1=0.94-0.95 achieved almost perfect
recall (=1.00) but moderate precision (=0.75), inflating F1 and generating many false
positives. In contrast, Word2Vec achieved consistently near-perfect performance
(F1=0.996, ROC-AUC and PR-AUC = 1.0) with both mean and TF-IDF pooling.
TF-IDF weighting gave a small yet stable improvement, confirming the value of
emphasizing informative tokens.

Table 3. Word-embedding baselines for Kazakh duplicate detection (zero-shot)

Metric FastText (mean) | FastText Word2Vec | Word2Vec
(tfidf) (mean) (tfidf)
Pooling mean tfidf mean tfidf
Dim 300 300 300 300
Val_Thr 0.95 0.94 0.95 0.95
Val P 0.735 0.738 0.9966 0.999
Val R 0.992 0.995 0.9925 0.992
Val_F1 0.844 0.847 0.9946 0.9955
Test P 0.747 0.749 0.9946 0.9982
Test R 0.991 0.993 0.9941 0.9938
Test_F1 0.852 0.854 0.9943 0.996
ROC-AUC 0.844 0.844 0.9997 0.9999
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PR-AUC 0.632 0.628 0.9998 0.9999
F1 [exact] 0.669 0.67 0.989 0.9963
F1 [paraphrase] 0.663 0.665 0.9893 0.9964
F1 [partial] 0.652 0.657 0.9897 0.9965
F1 [nondup] 0.885 0.886 0.9773 0.9839

FastText, with thresholds around 1~0.94-0.95, achieved nearly perfect recall
(=0.99) but only moderate precision (=0.75), leading to inflated F 1-scores and frequent
false positives. Its class-wise results confirmed this imbalance: non-duplicates were
detected reliably, while exact, paraphrase, and partial duplicates remained weak.

Word2Vec, by contrast, delivered almost flawless results. With t=0.95, both
pooling strategies reached F1=0.996, with ROC-AUC and PR-AUC close to 1.0, and
consistently high performance across all duplicate types. TF-IDF weighting gave a
small but stable improvement over mean pooling.

Thus, while FastText favors exhaustive recall, Word2Vec emerges as the
more precise and robust baseline, offering a reliable foundation for Kazakh duplicate
detection. Future work should confirm whether such near-perfect performance
generalizes to larger, more diverse corpora.

At the final stage of the experiment, five multilingual sentence-level models
were evaluated: LaBSE, multilingual-e5-base (intfloat), gte-multilingual-base
(Alibaba-NLP), bge-m3 (BAAI), and snowflake-arctic-embed-1-v2.0 (Snowflake).
Each model used its native pooling strategy (CLS or mean). The resulting vectors
were L2-normalized, cosine similarity was used as the proximity measure, and the
classification threshold was tuned on the validation set to maximize F1. On the test
set we reported Precision, Recall, and F1, together with the aggregate ranking metrics
ROC-AUC and PR-AUC. We also broke down F1 by example type (exact, partial,
non-duplicate).

With the “validation-tuned” threshold, most models converged to similar F1
scores of about 0.670. This effect is driven by extremely high recall (R =1.00) combined
with moderate precision (P = 0.504), i.e., an “aggressive” duplicate decision where
a low threshold labels almost all pairs as positive. Nevertheless, the models differ
clearly when examined via continuous ranking metrics. By PR-AUC, BGE-M3 and
Snowflake lead (= 0.614), followed by GTE (0.610), E5 (0.608), and LaBSE (0.594).
By ROC-AUC, BGE-M3 again performs best (0.550), with Snowflake (0.545) and
GTE (0.544) close behind, while LaBSE and E5 are more modest (= 0.526-0.527).
These differences are especially relevant for downstream threshold calibration or for
retrieval-style de-duplication.

Table 4. Results of Sentence Embedding Models on Kazakh Duplicate
Detection (Zero-Shot)

Metric LaBSE | multilingual-ES GTE- BGE-M3 Snowflake Arctic
multilingual
Val_Thr 0.10 0.10 0.10 0.65 0.61
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Val P 0.504 0.504 0.504 0.505 0.505
Val R 1.000 1.000 1.000 1.000 0.999
Val Fl 0.670 0.670 0.670 0.671 0.671
P (test) 0.504 0.504 0.504 0.504 0.504
R (test) 1.000 1.000 1.000 0.999 0.997
F1 (test) 0.670 0.670 0.670 0.670 0.669
ROC-AUC | 0.527 0.526 0.544 0.550 0.545
PR-AUC 0.594 0.608 0.610 0.614F 0.614%
F1 [exact] 0.506 0.506 0.506 0.507 0.507
F1 [partial] [ 0.502 0.502 0.502 0.501 0.500
F1 0.000 0.000 0.000 0.002 0.005
[nondup]

Type-wise F1 reveals a notable pattern: scores for exact and partial duplicates
are almost identical (= 0.506 and = 0.502), indicating comparable sensitivity to exact
matches and paraphrases. In contrast, the non-duplicate class remains near 0.000—
0.005, showing that under the current ™ the models effectively fail to predict negatives.
Optimal thresholds cluster at low values for LaBSE, ES, and GTE (t* = 0.10), but are
higher for BGE-M3 and Snowflake (t* =~ 0.61-0.65). Despite these different optima,
final F1 remains similar across models, reinforcing that ranking metrics are more
informative for comparing sentence-level models in a zero-shot setting.

From a practical standpoint, BGE-M3 and Snowflake are the most promising
choices. Their advantages on ROC-AUC and PR-AUC suggest that, once the threshold
is calibrated toward higher precision, these models have the greatest potential to
improve the Precision—Recall balance. In deployment, one should not optimize F1 on
validation alone; instead use criteria such as Precision@Recall > ro or Ff with B <1
to emphasize precision and avoid suppressing the non-duplicate class.

To further improve separation of negatives, it is advisable to apply hard-
negative mining, light contrastive fine-tuning on paired examples from the training
corpus, and hybrid architectures that combine BM25 retrieval with dense re-ranking.
Overall, the results indicate that all sentence-level models form a strong recall-
oriented zero-shot baseline, while BGE-M3 and Snowflake retain clear leadership on
ranking quality—making them the most rational choices for threshold calibration and
retrieval scenarios.

The study considers two scenarios for duplicate detection: (A) binary
classification of sentence pairs and (B) retrieval. In all experiments, multilingual
sentence embeddings (specifically, LaBSE and multilingual-e5-base) are used.
Vectors are L2-normalized, and cosine similarity serves as the primary proximity
measure.

Pair Classification (duplicate vs. non-duplicate)
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ROC-AUC vs PR-AUC (Kazakh Duplicate Detection, Zero-Shot)

BN ROC-AUC
I PR-AUC

0.64 4

0.62 4

0.60 +

0.58 +

score

0.56 4

0.54

0.52 1

0.50 -

E5-base GTE-base Snowflake-Arctic

Fig.3. ROC-AUC vs PR-AUC

With thresholds tuned on validation (t*=0.10), the models achieved F1=0.86,
Recall=1.00, and Precision=~0.75, alongside strong ranking separability (ROC-
AUC 0.76-0.77, PR-AUC =0.93). This confirms that while the models distinguish
duplicates from non-duplicates effectively in ranking space, the chosen operating
point is deliberately skewed toward maximal recall.

A robustness check with Euclidean and Manhattan distances clarified an
important methodological point: because embeddings are L2-normalized, these
distance measures induce rankings nearly identical to cosine. As a result, ROC-/
PR-AUC values remain unchanged. However, reusing the cosine threshold grid
directly in distance space yields degenerate predictions (P=R=F1=0), since the scale
is mismatched. This highlights the critical need to either (i) transform distances into
similarities (e.g., sim = 1 —d) or (ii) tune thresholds directly within the metric’s scale.

Overall, the results emphasize the distinction between ranking ability (strong
across all metrics) and cut-off calibration(sensitive to t). In deployment, t should
be calibrated for the desired trade-off—for example, maximizing FP with B<I to
emphasize precision, or enforcing a Precision@Recall>ro constraint.

Retrieval (duplicate search)

In the retrieval setting, two pipelines were compared: a dense-only FAISS
index and a hybrid BM25 followed by dense re-ranking strategy. Both LaBSE and E5
showed very similar behavior. The hybrid scheme consistently improved performance,
yielding +0.1-0.2 pp gains on Recall@k and small but stable improvements in MRR
and nDCG@10 compared to dense-only search. Gains were most visible in the top-
10 ranking region, confirming that hybrid reranking concentrates relevant candidates
more effectively.
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Between models, LaBSE demonstrated a slight but consistent advantage
over E5, especially on ranking-oriented metrics (MRR, nDCG@10). Importantly,
Recall curves saturated after k=10, suggesting that most relevant duplicates are
captured early, and extending candidate sets beyond top-10 provides diminishing
returns.

These findings support H3, showing that a hybrid BM25 combined with

dense re-ranking pipeline achieves more balanced retrieval by combining lexical
and semantic signals, even if the absolute improvements are modest.

Table 5. Results of binary classification of sentence pairs (duplicate vs. non-
duplicate) using sentence embeddings.

Model Sim Val_Thr | Val_ Val_ Val_F1 | Val_ Test_Precision | Test_ Test_ | Test ROC_ Test PR_AUC
Precision | Recall F1.0 Recall F1 AUC

intfloat/ cosine 0.1 0.7524 1.0 0.8587 | 0.8587 | 0.7524 1.0 0.8587 | 0.7601 0.9289

multilingual-

e5-base

intfloat/ euclidean | 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7599 0.9289

multilingual-

e5-base

intfloat/ manhattan | 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7602 0.9289

multilingual-

e5-base

sentence- cosine 0.1 0.7524 1.0 0.8587 | 0.8587 | 0.7524 1.0 0.8587 | 0.768 0.9306

transformers/

LaBSE

sentence- cuclidean 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.768 0.9306

transformers/

LaBSE

sentence- manhattan | 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7694 0.931

transformers/

LaBSE

The analysis revealed that, compared to simple mean pooling, TF-IDF—weighted
aggregation provides only a marginal yet consistent improvement for the Word2Vec
model (+0.001-0.002 F1; Table 3), confirming the usefulness of emphasizing
informative tokens. The Fl-versus-t curve (Fig. 4) demonstrates a clear “stability
window” for Word2Vec within the range © & [0.93; 0.96]; beyond these limits, the
metrics predictably drift toward precision—recall extremes. FastText, by contrast,
exhibits a narrower optimum, indicating higher sensitivity to threshold calibration.
Analysis of FastText false positives highlights recurring error patterns—
morphological variants with minimal affix changes, named entities and toponyms
occurring in similar contexts, formulaic expressions or clichés, and unattributed
quotations—suggesting an overreliance on surface similarity. Finally, the metric
robustness check (Fig. 5) confirms that cosine, Euclidean, and Manhattan distances
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produce equivalent rankings under L2-normalization; however, directly transferring
cosine thresholds to distance scales leads to degenerate predictions, underscoring
the need either to convert via sim = 1 — d or to re-tune thresholds within each

metric’s native scale.
Table 6. Results of duplicate retrieval using sentence embeddings.

k | Recall@k MRR nDCG@10 Model System

1 0.7396335583413693 | 0.7439812708094347 | 0.7396335583413693 intfloat/multilingual-e5- | dense-only
base

5 10.7490838958534234 | 0.7439812708094347 | 0.745141980841072 intfloat/multilingual-e5- | dense-only
base

10 |0.7500482160077145 | 0.7439812708094347 | 0.7454452067553312 intfloat/multilingual-e5- | dense-only
base

50 [0.7515911282545805 | 0.7439812708094347 | 0.7454452067553312 intfloat/multilingual-e5- | dense-only
base

1 0.740983606557377 | 0.745185642467465 | 0.740983606557377 intfloat/multilingual-e5- | bm25—rerank
base

5 10.7498553519768563 | 0.745185642467465 |0.7462413546492682 intfloat/multilingual-e5- | bm25—rerank
base

10 [0.7504339440694311 | 0.745185642467465 |0.7464307724975715 intfloat/multilingual-e5- | bm25—rerank
base

50 [0.7523625843780135 | 0.745185642467465 |0.7464307724975715 intfloat/multilingual-e5- | bm25—rerank
base

1 0.7419479267116683 | 0.7451316619387559 | 0.7419479267116683 sentence-transformers/ dense-only
LaBSE

5 10.7486981677917068 | 0.7451316619387559 | 0.7458319625713553 sentence-transformers/ dense-only
LaBSE

10 | 0.7500482160077145 | 0.7451316619387559 | 0.7462723023088897 sentence-transformers/ dense-only
LaBSE

50 [0.751976856316297 | 0.7451316619387559 | 0.7462723023088897 sentence-transformers/ dense-only
LaBSE

1 0.743297974927676 | 0.7464302433878133 | 0.743297974927676 sentence-transformers/ bm25—rerank
LaBSE

5 0.7500482160077145 | 0.7464302433878133 | 0.747173558762129 sentence-transformers/ bm25—rerank
LaBSE

10 1 0.7512054001928641 |0.7464302433878133 | 0.747557091286953 1 sentence-transformers/ bm25—rerank
LaBSE

50 |0.7523625843780135 |0.7464302433878133 | 0.7475570912869531 sentence-transformers/ bm25—rerank
LaBSE

Conclusion

This study presents the systematic comparison of TF-IDF, word, and
sentence embeddings for duplicate detection in Kazakh texts. The findings reveal
distinct differences in accuracy, robustness, and semantic generalization. Word2Vec
with TF-IDF weighting achieved the highest and most stable performance across
duplicate types, serving as a strong baseline. Sentence embeddings (notably BGE-
M3 and Snowflake Arctic) excelled in capturing semantic and contextual
similarities, validating their suitability for paraphrased duplicates. TF-IDF models
remained competitive on exact and partial overlaps but declined on semantic cases,
while FastText favored recall at the cost of precision. A BM25 combined with dense
re-ranking pipeline further improved retrieval metrics, balancing lexical and
semantic similarity. Overall, the results establish Word2Vec as a robust baseline
and demonstrate that calibrated sentence embeddings and hybrid methods offer
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superior scalability for deduplication in Kazakh and other morphologically rich,

low-resource languages.
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