МЕЖДУНАРОДНЫЙ ЖУРНАЛ ИНФОРМАЦИОННЫХ И КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

Competitive learning in neural networks

Авторы

  • Mukhanov S.B. International Information Technology University
  • Aldanazar A.A. International Information Technology University
  • Uatbayeva A.M. International Information Technology University
  • Alimbekov A.Ye. International Information Technology University
  • Marat G.S. International Information Technology University

DOI:

https://doi.org/10.54309/IJICT.2020.3.3.011

Ключевые слова:

Выбраны:competitive learning, neural networks, learning, perceptron, synaptic weights

Аннотация

The article presents the basic concept of competitive learning in neural networks. Provides the main machine learning learning models and applications. The analysis of the advantages and disadvantages of these models is carried out. The geometric interpretation of competitive learning is presented in terms of mathematical formulas, as well as the behavior of neurons in this model. Neural systems are described as a powerful tool and driver in the field of modern Internet technologies, in data science and big (meta) data.

Скачивания

Данные скачивания пока недоступны.

Загрузки

Опубликован

2021-07-29

Как цитировать

Mukhanov S.B., Aldanazar A.A., Uatbayeva A.M., Alimbekov A.Ye., & Marat G.S. (2021). Competitive learning in neural networks. МЕЖДУНАРОДНЫЙ ЖУРНАЛ ИНФОРМАЦИОННЫХ И КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ, 1(3). https://doi.org/10.54309/IJICT.2020.3.3.011
Loading...