Sign language recognition using deep learning methods
DOI:
https://doi.org/10.54309/IJICT.2020.1.1.035Кілт сөздер:
machine learning, training, testing, dataset, sign language, algorithmsАңдатпа
Sign language gesture recognition employs various problems, such as variabilities in handshapes, movements, signers’ facial expressions and etc. Hence, teaching a machine to recognize the patterns that consider all of the problems mentioned above is a big challenge. The main goal of this work is
to develop a set of methods and techniques involving deep learning in order to build a system capable of highly efficient sign language gesture recognition. In this article, we make brief research among the related
works and propose our idea on our future work.
##plugins.generic.usageStats.downloads##
##plugins.generic.usageStats.noStats##
Жүктеулер
Жарияланды
2021-07-22
Дәйексөзді қалай келтіруге болады
Маликайдар С., Toikenova U., & Sarsembayev A. (2021). Sign language recognition using deep learning methods. ХАЛЫҚАPАЛЫҚ АҚПАРАТТЫҚ ЖӘНЕ КОММУНИКАЦИЯЛЫҚ ТЕХНОЛОГИЯЛАР ЖУРНАЛЫ, 1(1). https://doi.org/10.54309/IJICT.2020.1.1.035
Журналдың саны
Бөлім
ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ
Лицензия
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en